Howley. Virología ADN_7ed

66

Virología. Volumen 2. Virus de ADN

175. Meyers JM, Spangle JM, Munger K. The human papillomavirus type 8 E6 pro- tein interferes with NOTCH activation during keratinocyte differentiation. J Virol 2013;87(8):4762–4767. 176. Mirabello L, Yeager M, Yu K, et al. HPV16 E7 genetic conservation is critical to carcinogen- esis. Cell 2017;170(6):1164–1174 e6. 177. Missero C, Calautti E, Eckner R, et al. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc Natl Acad Sci U S A 1995;92:5451–5455. 178. Mohr IJ, Clark R, Sun S, et al. Targeting the E1 replication protein to the papilloma- virus origin of replication by complex formation with the E2 transactivator. Science 1990;250:1694–1699. 179. Moody CA, Laimins LA. Human papillomaviruses activate the ATMDNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 2009;5(10):e1000605. 180. Muller M, Jacob Y, Jones L, et al. Large scale genotype comparison of human papillomavirus E2-host interaction networks provides new insights for e2 molecular functions. PLoS Pathog 2012;8(6):e1002761. 181. Münger K, Baldwin A, Edwards KM, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol 2004;78(21):11451–11460. 182. Münger K, Phelps WC, Bubb V, et al. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratino- cytes. J Virol 1989;63:4417–4421. 183. Nakagawa S, Huibregtse JM. Human scribble (vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 2000;20:8244–8253. 184. Neary K, DiMaio D. Open reading frames E6 and E7 of bovine papillomavirus type 1 are both required for full transformation of mouse C127 cells. J Virol 1989;63(1):259–266. 185. Nguyen CL, Eichwald C, Nibert ML, et al. Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component gamma-tubulin. J Virol 2007;81(24):13533–13543. 186. Nicholls PK, Stanley MA. The immunology of animal papillomaviruses. Vet Immunol Immunopathol 2000;73(2):101–127. 187. Noor A, Dupuis L, Mittal K, et al. 15q11.2 duplication encompassing only the UBE3A gene is associated with developmental delay and neuropsychiatric phenotypes. Hum Mutat 2015;36(7):689–693. 188. Oh ST, Kyo S, Laimins LA. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol 2001;75:5559–5566. 189. Oliveira JG, Colf LA, McBride AA. Variations in the association of papillomavirus E2 pro- teins with mitotic chromosomes. Proc Natl Acad Sci U S A 2006;103(4):1047–1052. 190. Orth G, Favre M, Jablonska S, et al. Viral sequences related to a human skin papillomavirus in genital warts. Nature 1978;275:334–336. 191. Parish JL, Bean AM, Park RB, et al. ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell 2006;24:867–876. 192. Parish JL, Kowalczyk A, Chen HT, et al. E2 proteins from high- and low-risk human pap- illomavirus types differ in their ability to bind p53 and induce apoptotic cell death. J Virol 2006;80(9):4580–4590. 193. Park JS, Kim EJ, Kwon HJ, et al. Inactivation of interferon regulatory factor-1 tumor sup- pressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem 2000;275:6764–6769. 194. Park RB, Androphy EJ. Genetic analysis of high-risk e6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. JVirol 2002;76(22):11359–11364. 195. Parsons RJ, Kidd JG. Oral papillomatosis of rabbits: a virus disease. J Exp Med 1943;77:233–250. 196. Patel D, Huang SM, Baglia LA, et al. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 1999;18:5061–5072. 197. Pentland I, Campos-Leon K, Cotic M, et al. Disruption of CTCF-YY1-dependent looping of the human papillomavirus genome activates differentiation-induced viral oncogene tran- scription. PLoS Biol 2018;16(10):e2005752. 198. Petti L, DiMaio D. Stable association between the bovine papillomavirus E5 transforming protein and activated platelet-derived growth factor receptor in transformed mouse cells. Proc Natl Acad Sci U S A 1992;89:6736–6740. 199. Petti L, DiMaio D. Specific interaction between the bovine papillomavirus E5 transform- ing protein and the b receptor for platelet-derived growth factor in stably transformed and acutely transfected cells. J Virol 1994;68:3582–3592. 200. Pfister H, Gissman L, zur Hausen H. Partial characterization of proteins of human papil- loma viruses (HPV) 1-3. Virology 1977;83:131–137. 201. Phelps WC, Münger K, Yee CL, et al. Structure-function analysis of the human papilloma- virus type 16 E7 oncoprotein. J Virol 1992;66:2418–2427. 202. Phelps WC, Yee CL, Münger K, et al. The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 1988;53:539–547. 203. Piirsoo M, Ustav E, Mandel T, et al. Cis and trans requirements for stable episomal mainte- nance of the BPV-1 replicator. EMBO J 1996;15:1–11. 204. Poddar A, Reed SC, McPhillips MG, et al. The human papillomavirus type 8 E2 teth- ering protein targets the ribosomal DNA loci of host mitotic chromosomes. J Virol 2009;83:640–650. 205. Popa A, Zhang W, Harrison MS, et al. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection. PLoS Pathog 2015;11(2):e1004699. 206. Porter SS, McBride AA. Human papillomavirus quasivirus production and infection of pri- mary human keratinocytes. Curr Protoc Microbiol 2020;57(1):e101. 207. Powell ML, Smith JA, Sowa ME, et al. NCoR1 mediates papillomavirus E8;E2C transcrip- tional repression. J Virol 2010;84(9):4451–4460. 208. Pyeon D, Pearce SM, Lank SM, et al. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 2009;5(2):e1000318. 209. Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of kera- tinocyte growth arrest and entry into differentiation. EMBO J 2001;20(13):3427–3436.

210. Reznikoff CA, Belair C, Savelieva E, et al. Long-term genome stability and minimal geno- typic and phenotypic alterations in HPV-16 E7-, but not E6-immortalized human uroep- ithelial cells. Genes Dev 1994;8:2227–2240. 211. Richards RM, Lowy DR, Schiller JT, et al. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci U S A 2006;103(5):1522–1527. 212. Roberts JN, Buck CB, Thompson CD, et al. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 2007;13(7):857–861. 213. Ronco LV, Karpova AY, Vidal M, et al. The human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 1998;12:2061–2072. 214. Rose RC, Bonnez W, Reichman RC, et al. Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of virus like particles. J Virol 1993;67:1936–1944. 215. Rous P, Beard JW. The progression to carcinoma of virus-induced rabbit papillomas (Shope). J Exp Med 1935;62:523–548. 216. Rowson KEK, Mahy BWJ. Human papova (wart) virus. Bacteriol Rev 1967;31:110–131. 217. Rozenblatt-Rosen O, Deo RC, Padi M, et al. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 2012;487(7408):491–495. 218. Ruesch MN, Laimins LA. Human papillomavirus oncoproteins alter differentiation-de- pendent cell cycle exit on suspension in semisolid medium. Virology 1998;250:19–29. 219. Sailer C, Offensperger F, Julier A, et al. Structural dynamics of the E6AP/UBE3A-E6-p53 enzyme-substrate complex. Nat Commun 2018;9(1):4441. 220. Sakakibara N, Chen D, McBride AA. Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog 2013;9(7):e1003321. 221. Sakakibara N, Mitra R, McBride AA. The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J Virol 2011;85(17):8981–8995. 222. Sankovski E, Abroi A, Ustav M Jr, et al. Nuclear myosin 1 associates with papillomavirus E2 regulatory protein and influences viral replication. Virology 2018;514:142–155. 223. Schapiro F, Sparkowski J, Adduci A, et al. Golgi alkalinization by the papillomavirus E5 oncoprotein. J Cell Biol 2000;148(2):305–315. 224. Scheffner M, Huibregtse JM, Vierstra RD, et al. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993;75:495–505. 225. Scheffner M, Munger K, Byrne JC, et al. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci U S A 1991;88:5523–5527. 226. Scheffner M, Nuber U, Huibregtse J. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 1995;373(6509):81–83. 227. Scheffner M, Werness BA, Huibregtse JM, et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990;63:1129–1136. 228. Scherer M, Stamminger T. Emerging Role of PML Nuclear Bodies in Innate Immune Signaling. J Virol 2016;90(13):5850–5854. 229. Schlegel R, Phelps WC, Zhang YL, et al. Quantitative keratinocyte assay detects two bio- logical activities of human papillomavirus DNA and identifies viral types associated with cervical carcinoma. EMBO J 1988;7:3181–3187. 230. Schweiger MR, You J, Howley PM. Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J Virol 2006;80:4276–4285. 231. Scott ML, Coleman DT, Kelly KC, et al. Human papillomavirus type 16 E5-mediated upregulation of Met in human keratinocytes. Virology 2018;519:1–11. 232. Shamanin VA, Androphy EJ. Immortalization of human mammary epithelial cells is associ- ated with inactivation of the p14ARF-p53 pathway. Mol Cell Biol 2004;24(5):2144–2152. 233. Sharma S, Munger K. KDM6A-Mediated Expression of the Long Noncoding RNA DINO Causes TP53 Tumor Suppressor Stabilization in Human Papillomavirus 16 E7-Expressing Cells. J Virol 2020;94(12):e02178-02119. 234. Shope RE. Immunization of rabbits to infectious papillomatosis. J Exp Med 1937;65: 219–231. 235. Shope RE, Hurst EW. Infectious papillomatosis of rabbits; with a note on the histopathol- ogy. J Exp Med 1933;58:607–624. 236. Siddiqa A, Leon KC, James CD, et al. The human papillomavirus type 16 L1 protein directly interacts with E2 and enhances E2-dependent replication and transcription activa- tion. J Gen Virol 2015;96(8):2274–2285. 237. Sitz J, Blanchet SA, Gameiro SF, et al. Human papillomavirus E7 oncoprotein tar- gets RNF168 to hijack the host DNA damage response. Proc Natl Acad Sci U S A 2019;116(39):19552–19562. 238. Skiadopoulos MH, McBride AA. Bovine papillomavirus type 1 genomes and the E2 trans- activator protein are closely associated with mitotic chromatin. J Virol 1998;72:2079–2088. 239. Smith JA, Haberstroh FS, White EA, et al. SMCX and components of the TIP60 complex contribute to E2 regulation of the HPV E6/E7 promoter. Virology 2014;468–470:311–321. 240. Smith JA, White EA, Sowa ME, et al. Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expres- sion. Proc Natl Acad Sci U S A 2010;107:3752–3757. 241. Smotkin D, Prokoph H, Wettstein FO. Oncogenic and nononcogenic human gen- ital papillomaviruses generate the E7 mRNA by different mechanisms. J Virol 1989;63(3):1441–1447. 242. Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regu- lator of transcription. Virus Res 2017;231:56–75. 243. Songock WK, Scott ML, Bodily JM. Regulation of the human papillomavirus type 16 late promoter by transcriptional elongation. Virology 2017;507:179–191. 244. Spalholz BA, Yang Y-C, Howley PM. Transactivation of a bovine papillomavirus transcrip- tional regulatory element by the E2 gene product. Cell 1985;42:183–191.

245. Spangle JM, Ghosh-Choudhury N, Munger K. Activation of cap-dependent translation by mucosal human papillomavirus E6 proteins is dependent on the integrity of the LXXLL binding motif. J Virol 2012;86(14):7466–7472. 246. Spurgeon ME, Lambert PF. Mus musculus Papillomavirus 1: a new frontier in animal models of papillomavirus pathogenesis. J Virol 2020;94(9). SAMPLE

Made with FlippingBook Annual report maker