Howley. Virología ADN_7ed

67

CAPÍTULO 2 • Papillomaviridae : los virus y su replicación

276. Vande Pol SB, Brown MC, Turner CE. Association of bovine papillomavirus type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interac- tion motif. Oncogene 1998;16:43–52. 277. Veldman T, Horikawa I, Barrett JC, et al. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 2001;75(9): 4467–4472. 278. Veldman T, Liu X, Yuan H, et al. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci U S A 2003;100:8211–8216. 279. Vieira VC, Leonard B, White EA, et al. Human papillomavirus E6 triggers upregulation of the antiviral and cancer genomic DNA deaminase APOBEC3B. MBio 2014;5(6). 280. Vos RM, Altreuter J, White EA, et al. The ubiquitin-specific peptidase USP15 regulates human papillomavirus type 16 E6 protein stability. J Virol 2009;83(17):8885–8892. 281. Wallace NA, Galloway DA. Novel functions of the human papillomavirus E6 oncopro- teins. Annu Rev Virol 2015;2(1):403–423. 282. Wang NJ, Sanborn Z, Arnett KL, et al. Loss-of-function mutations in Notch recep- tors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A 2011;108(43):17761–17766. 283. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990;248:76–79. 284. White A, Livanos EM, Tlsty TD. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev 1994;8: 666–677. 285. White EA, Munger K, Howley PM. High-risk human papillomavirus E7 proteins target PTPN14 for degradation. MBio 2016;7(5). 286. White EA, Sowa ME, Tan MJ, et al. Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A 2012;109(5):E260–E267. 287. Whyte P, Buchkovich KJ, Horowitz JM, et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988;334(124):124–129. 288. Wilgenburg BJ, Budgeon LR, Lang CM, et al. Characterization of immune responses during regression of rabbit oral papillomavirus infections. Comp Med 2005;55(5): 431–439. 289. Wolf M, Garcea RL, Grigorieff N, et al. Subunit interactions in bovine papillomavirus. Proc Natl Acad Sci U S A 2010;107(14):6298–6303. 290. Wood CE, Chen Z, Cline JM, et al. Characterization and experimental transmission of an oncogenic papillomavirus in female macaques. J Virol 2007;81(12):6339–6345. 291. Wooldridge TR, Laimins LA. Regulation of human papillomavirus type 31 gene expres- sion during the differentiation-dependent life cycle through histone modifications and transcription factor binding. Virology 2008;374(2):371–380. 292. Wu L, Aster JC, Blacklow SC, et al. MAML1, a human homologue of Drosophila mas- termind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 2000;26(4): 484–489. 293. Wu SY, Lee AY, Hou SY, et al. Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev 2006;20:2383–2396. 294. Xu M, Luo W, Elzi DJ, et al. NFX1 interacts with mSin3A/histone deacetylase to repress hTERT transcription in keratinocytes. Mol Cell Biol 2008;28(15):4819–4828. 295. You J, Croyle JL, Nishimura A, et al. Interaction of the bovine papillomavirus E2 pro- tein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 2004;117: 349–360. 296. Zerfass-Thome K, Zwerschke W, Mannhardt B, et al. Inactivation of the cdk inhib- itor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 1996;13:2323–2330. 297. Zhang B, Li P, Wang E, et al. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interfer- on-gamma. Virology 2003;310(1):100–108. 298. Zhang B, Srirangam A, Potter DA, et al. HPV16 E5 protein disrupts the c-Cbl-EGFR interaction and EGFR ubiquitination in human foreskin keratinocytes. Oncogene 2005;24(15):2585–2588. 299. Zheng G, Schweiger M-R, Martinez-Noel G, et al. Brd4 regulation of papillomavirus E2 protein stability. J Virol 2009;83:8683–8692. 300. Zhou J, Sun XY, Stenzel DJ, et al. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 1991;185:251–257.

247. Stenlund A. E1 initiator DNA binding specificity is unmasked by selective inhibition of non-specific DNA binding. EMBO J 2003;22(4):954–963. 248. Stoler MH, Broker TR. In situ hybridization detection of human papilloma virus DNA and messenger RNA in genital condylomas and a cervical carcinoma. Hum Pathol 1986;17:1250–1258. 249. Storey A, Pim D, Murray A, et al. Comparison of the in vitro transforming activities of human papillomavirus types. EMBO J 1988;6:1815–1820. 250. Straight SW, Hinkle PM, Jewers RJ, et al. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 1993;67:4521–4532. 251. Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011;333(6046):1157–1160. 252. Surviladze Z, Dziduszko A, Ozbun MA. Essential roles for soluble virion-associated hepa- ran sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog 2012;8(2):e1002519. 253. Syverton JT. The pathogenesis of the rabbit papilloma-to-carcinoma sequence. Ann N Y Acad Sci 1952;54:1126–1140. 254. Syverton JT, Berry GP. Carcinoma in the cottontail rabbit following spontaneous virus papilloma (Shope). Proc Soc Exp Biol Med 1935;33:399–400. 255. Szalmas A, Tomaic V, Basukala O, et al. The PTPN14 tumor suppressor is a degradation target of human papillomavirus E7. J Virol 2017;91(7):e00057-17. 256. Tan MJ, White EA, Sowa ME, et al. Cutaneous beta-human papillomavirus E6 proteins bind Mastermind-like coactivators and repress Notch signaling. Proc Natl Acad Sci U S A 2012;109(23):E1473–E1480. 257. Thatte J, Banks L. Human papillomavirus 16 (HPV-16), HPV-18, and HPV-31 E6 override the normal phosphoregulation of E6AP enzymatic activity. J Virol 2017;91(22):e01390-17. 258. Thatte J, Massimi P, Thomas M, et al. The human papillomavirus E6 PDZ binding motif links DNA damage response signaling to E6 inhibition of p53 transcriptional activity. J Virol 2018;92(16):e00465-18. 259. Thierry F, Yaniv M. The BPV1 E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J 1987;6:3391–3397. 260. Thomas JT, Hubert WG, Ruesch MN, et al. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in nor- mal human keratinocytes. Proc Natl Acad Sci U S A 1999;96:8449–8454. 261. Thomas M, Banks L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 1998;17(23):2943–2954. 262. Thomas M, Boiron M, Tanzer J, et al. In vitro transformation of mice by bovine papillo- mavirus. Nature 1964;202:709–710. 263. Thomas M, Laura R, Hepner K, et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 2002;21(33):5088–5096. 264. Thomas MC, Chiang CM. E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 2005;17(2):251–264. 265. Tong X, Boll W, Kirschhausen T, et al. Interaction of the bovine papillomavirus E6 protein with the clathrin adaptor complex AP-1. J Virol 1998;72:476–482. 266. Tong X, Howley PM. The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc Natl Acad Sci U S A 1997;94:4412–4417. 267. Trus BL, Roden RB, Greenstone HL, et al. Novel structural features of bovine papilloma- virus capsid revealed by a three-dimensional reconstruction to 9 A resolution. Nat Struct Biol 1997;4(5):413–420. 268. Turek LP, Byrne JC, Lowy DR, et al. Interferon induces morphologic reversion with elim- ination of extrachromosomal viral genomes in bovine papillomavirus-transformed mouse cells. Proc Natl Acad Sci U S A 1982;79:7914–7918. 269. Ustav M, Ustav E, Szymanski P, et al. Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. EMBO J 1991;10:4321–4329. 270. Van Doorslaer K. Evolution of the papillomaviridae. Virology 2013;445(1–2):11–20. 271. Van Doorslaer K, Chen Z, Bernard H, et al. ICTV virus taxonomy profile: Papillomaviridae. J Gen Virol 2018;99:989–990. 272. Van Doorslaer K, Li Z, Xirasagar S, et al. The Papillomavirus Episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res 2017;45(D1):D499–D506. 273. Van Doorslaer K, McBride AA. Molecular archeological evidence in support of the repeated loss of a papillomavirus gene. Sci Rep 2016;6:33028. 274. Van Doorslaer K, Porter S, McKinney C, et al. Novel recombinant papillomavirus genomes expressing selectable genes. Sci Rep 2016;6:37782. 275. Van Tine BA, Dao LD, Wu SY, et al. Human papillomavirus (HPV) origin-binding pro- tein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci U S A 2004;101:4030–4035.

301. Zimmermann H, Degenkolbe R, Bernard HU, et al. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 1999;73:6209–6219. SAMPLE

Made with FlippingBook Annual report maker