Howley. Virología ADN_7ed

65

CAPÍTULO 2 • Papillomaviridae : los virus y su replicación

106. Hatterschide J, Bohidar AE, Grace M, et al. PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc Natl Acad Sci U S A 2019;116(14):7033–7042. 107. Hatterschide J, Brantly AC, Grace M, et al. A conserved amino acid in the C terminus of human papillomavirus E7 mediates binding to PTPN14 and repression of epithelial differentiation. J Virol 2020;94(17). 108. Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296–299. 109. Hawley-Nelson P, Vousden KH, Hubbert NL, et al. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 1989;8:3905–3910. 110. Hedge RS, Rossman SR, Laimins LA, et al. Crystal structure at 1.7A of the bovine pap- illomavirus-1 E2 DNA-binding domain bound to its DNA target. Nature 1992;359: 505–512. 111. Hoppe-Seyler K, Bossler F, Braun JA, et al. The HPV E6/E7 oncogenes: key fac- tors for viral carcinogenesis and therapeutic targets. Trends Microbiol 2018;26(2): 158–168. 112. Howett MK, Christensen ND, Kreider JW. Tissue xenografts as a model system for study of the pathogenesis of papillomaviruses. Clin Dermatol 1997;15(2):229–236. 113. Huang L, Kinnucan E, Wang G, et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 1999;286:1321–1326. 114. Hubbert NL, Sedman SA, Schiller JT. Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes. J Virol 1992;66:6237–6241. 115. Huh KW, DeMasi J, Ogawa H, et al. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A 2005;102(32):11492–11497. 116. Huibregtse JM, Scheffner M, Beaudenon S, et al. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A 1995;92:2563–2567. 117. Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 1991;10:4129–4135. 118. Huibregtse JM, Scheffner M, Howley PM. Cloning and expression of the cDNA for E6-AP: a protein that mediates the interaction of the human papillomavirus E6 oncopro- tein with p53. Mol Cell Biol 1993;13:775–784. 119. Hwang ES, Nottoli T, DiMaio D. The HPV 16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 1995;211:227–233. 120. Iftner T, Haedicke-Jarboui J, Wu SY, et al. Involvement of Brd4 in different steps of the papillomavirus life cycle. Virus Res 2017;231:76–82. 121. Ilves I, Kivi S, Ustav M. Long-term episomal maintenance of bovine papillomavirus type 1 plasmids is determined by attachment to host chromosomes, which is mediated by the viral E2 protein and its binding sites. J Virol 1999;73:4404–4412. 122. Jain S, Moore RA, Anderson DM, et al. Cell-mediated immune responses to COPV early proteins. Virology 2006;356(1–2):23–34. 123. Jang MK, Anderson DE, van Doorslaer K, et al. A proteomic approach to discover and compare interacting partners of papillomavirus E2 proteins from diverse phylogenetic groups. Proteomics 2015;15(12):2038–2050. 124. Jewers RJ, Hildebrandt P, Ludlow JW, et al. Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J Virol 1992;66:1329–1335. 125. Joh J, Jenson AB, King W, et al. Genomic analysis of the first laboratory-mouse papilloma- virus. J Gen Virol 2011;92(Pt 3):692–698. 126. Johansson C, Schwartz S. Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol 2013;11(4):239–251. 127. Johnson KM, Kines RC, Roberts JN, et al. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 2009;83(5):2067–2074. 128. Jones DL, Alani RM, Münger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21cip1-mediated inhibition of cdk2. Genes Dev 1997;11:2101–2111. 129. Jones DL, Thompson DA, Munger K. Destabilization of the RB tumor suppressor pro- tein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 1997;239:97–107. 130. Kamper N, Day PM, Nowak T, et al. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 2006;80(2):759–768. 131. Kao WH, Beaudenon SL, Talis AL, et al. Human papillomavirus type 16 E6 induces self-ubiquitination of the E6AP ubiquitin-protein ligase. J Virol 2000;74:6408–6417. 132. Karabadzhak AG, Petti LM, Barrera FN, et al. Two transmembrane dimers of the bovine papillomavirus E5 oncoprotein clamp the PDGF beta receptor in an active dimeric con- formation. Proc Natl Acad Sci U S A 2017;114(35):E7262–E7271. 133. Kessis TD, Slebos RJ, Nelson WG, et al. Human papillomavirus 16 E6 expression dis- rupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci U S A 1993;90:3988–3992. 134. Kines RC, Thompson CD, Lowy DR, et al. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci U S A 2009;106(48):20458–20463. 135. Kiran S, Dar A, Singh SK, et al. The deubiquitinase USP46 is essential for proliferation and tumor growth of HPV-transformed cancers. Mol Cell 2018;72(5):823–835 e5. 136. Kirnbauer R, Booy F, Cheng N, et al. Papillomavirus L1 major capsid protein self-as- sembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A 1992;89:12180–12184. 137. Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 1997;15:70–73. 138. Kiyono T, Foster SA, Koop JI, et al. Both Rb/p16INK4a inactivation and telomerase activ- ity are required to immortalize human epithelial cells. Nature 1998;396:84–88.

139. Kiyono T, Hiraiwa A, Fujita M, et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 1997;94(21):11612–11616. 140. Kleijnen MF, Shih AH, Zhou P, et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 2000;6(2):409–419. 141. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 1996;380:79–81. 142. Kotnik Halavaty K, Regan J, Mehta K, et al. Human papillomavirus E5 oncoproteins bind the A4 endoplasmic reticulum protein to regulate proliferative ability upon differentiation. Virology 2014;452–453:223–230. 143. Kreider JW. The Shope papilloma to carcinoma complex of rabbits: a model system of neoplastic progression and spontaneous regression. Adv Cancer Res 1981;35:81–110. 144. Kreider JW, Cladel NM, Patrick SD, et al. High efficiency induction of papillo- mas in vivo using recombinant cottontail rabbit papillomavirus DNA. J Virol Methods 1995;55(2):233–244. 145. Kubbutat MHG, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997;387:299–303. 146. Kumar A, Zhao Y, Meng G, et al. Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 2002;22:5801–5812. 147. Kumar RA, Naidu SR, Wang X, et al. Interaction of papillomavirus E2 protein with the Brm chromatin remodeling complex leads to enhanced transcriptional activation. J Virol 2007;81(5):2213–2220. 148. Kumar S, Kao WH, Howley PM. Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem 1997;272:13548–13554. 149. Kumar S, Talis AL, Howley PM. Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J Biol Chem 1999;274:18785–18792. 150. Law M-F, Lowy DR, Dvoretzky I, et al. Mouse cells transformed by bovine papilloma- virus contain only extrachromosomal viral DNA sequences. Proc Natl Acad Sci U S A 1981;78:2727–2731. 151. Lee SS, Glaunsinger B, Mantovani F, et al. Multi-PDZ domain protein MUPP1 is a cellu- lar target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncop- roteins. J Virol 2000;74:9680–9693. 152. Li L, Li Z, Howley PM, et al. E6AP and calmodulin reciprocally regulate estrogen receptor stability. J Biol Chem 2006;281(4):1978–1985. 153. Li R, Knight J, Bream G, et al. Specific recognition nucleotides and their context deter- mine the affinity of E2 protein for 17 binding sites in the BPV-1 genome. Genes Dev 1989;3:510–526. 154. Liu X, Dakic A, Zhang Y, et al. HPV E6 protein interacts physically and function- ally with the cellular telomerase complex. Proc Natl Acad Sci U S A 2009;106(44): 18780–18785. 155. Liu X, Yuan H, Fu B, et al. The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem 2005;280:10807–10816. 156. Liu Y, Chen JJ, Gao Q, et al. Multiple functions of human papillomavirus type 16 E6 con- tribute to the immortalization of mammary epithelial cells. J Virol 1999;73:7297–7307. 157. Longworth MS, Laimins LA. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol 2004;78:3533–3541. 158. Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004;68(2):362–372. 159. LongworthMS,Wilson R, Laimins LA. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J 2005;24(10):1821–1830. 160. Lowell S, Jones P, Le Roux I, et al. Stimulation of human epidermal differentiation by del- ta-notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000;10(9):491–500. 161. Luscher-Firzlaff JM, Westendorf JM, Zwicker J, et al. Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene 1999;18(41):5620–5630. 162. Mannhardt B, Weinzimer SA, Wagner M, et al. Human papillomavirus type 16 E7 oncop- rotein binds and inactivates growth-inhibitory insulin-like growth factor binding protein 3. Mol Cell Biol 2000;20:6483–6495. 163. Martin P, Vass WC, Schiller JT, et al. The bovine papillomavirus E5 transforming protein can stimulate the transforming activity of EGF and CSF-1 receptors. Cell 1989;59(1):21–32. 164. Martinez-Noel G, Galligan JT, Sowa ME, et al. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol Cell Biol 2012;32(15):3095–3106. 165. Martinez-Zapien D, Ruiz FX, Poirson J, et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 2016;529(7587):541–545. 166. Massimi P, Shai A, Lambert P, et al. HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background. Oncogene 2008;27(12):1800–1804. 167. Matsuura T, Sutcliffe JS, Fang P, et al. De novo truncating mutations in E6AP ubiqui- tin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 1997;15:74–77. 168. McBride AA. The papillomavirus E2 proteins. Virology 2013;445(1–2):57–79. 169. McBride AA. Mechanisms and strategies of papillomavirus replication. Biol Chem 2017;398(8):919–927. 170. McLaughlin-Drubin ME, Crum CP, Munger K. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A 2011;108(5):2130–2135. 171. McLaughlin-Drubin ME, Huh KW, Munger K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol 2008;82(17):8695–8705. 172. McLaughlin-Drubin ME, Meyers J, Munger K. Cancer associated human papillomavi- ruses. Curr Opin Virol 2012;2(4):459–466.

173. Mejia AF, Culp TD, Cladel NM, et al. Preclinical model to test human papillomavirus virus (HPV) capsid vaccines in vivo using infectious HPV/cottontail rabbit papillomavirus chimeric papillomavirus particles. J Virol 2006;80(24):12393–12397. 174. Meyers C, Frattini MG, Hudson JB, et al. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 1992;257:971–973. SAMPLE

Made with FlippingBook Annual report maker