8-A860A-2018-Books-00091Rathmell5e_Ch096-NO CROP-ROUND1
16
PART FIVE METHODS FOR SYMPTOMATIC CONTROL
68. Eriksson MB, Sjölund BH, Nielzén S. Long term results of peripheral con ditioning stimulation as an analgesic measure in chronic pain. Pain 1979;6: 335–347. 69. De Ridder D, Vanneste S, Plazier M, et al. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery 2010;66:986–990. 70. De Ridder D, Plazier M, Kamerling N, et al. Burst spinal cord stimulation for limb and back pain. World Neurosurg 2013;80:642–649. 71. De Ridder D, van der Loo E, Van der Kelen K, et al. Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially? Int J Med Sci 2007;9:242–246. 72. De Ridder D, Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation 2016;19(1):47–59. 73. Stancák A, Kozák J, Vrba I, et al. Functional magnetic resonance imaging of cerebral activation during spinal cord stimulation in failed back surgery syndrome patients. Eur J Pain 2008;12:137–148. 74. Tang R, Martinez M, Goodman-Keiser M, et al. Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model. Neuromodulation 2014;17:143–151. 75. Crosby N, Weisshaar C, Smith J, et al. Burst and tonic spinal cord stimu lation differentially activate GABAergic mechanisms to attenuate pain in a rat model of cervical radiculopathy. IEEE Trans Biomed Eng 2015;62(6): 1604–1613. 76. Cui JG, Linderoth B, Meyerson BA. Incidence of mononeuropathy in rats is influenced by pre-emptive alteration of spinal excitability. Eur J Pain 1997;1:53–59. 77. Ultenius C, Song Z, Meyerson BA, et al. Spinal GABAergic mechanisms in the effects of spinal cord stimulation in a rodent model of neuropathic pain: is GABA synthesis involved? Neuromodulation 2013;16(2):114–120. 78. Crosby ND, Goodman Keiser MD, Smith JR, et al. Stimulation parameters define the effectiveness of burst spinal cord stimulation in a rat model of neuropathic pain. Neuromodulation 2015;18:1–8. 79. Shealy CN. Dorsal column electrohypalgesia. Headache 1969;9(2):99–102. 80. Waltz JM. Spinal cord stimulation. A quarter century of development and investigation. A review of its development and effectiveness in 1,336 cases. Stereotact Funct Neurosurgery 1997;69(1–4 pt 2):288–299. 81. Miller J, Eldabe S, Buchser E, et al. Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation 2016;19(4):373–384. 82. Sweet J, Badjatiya A, Tan D, et al. Paresthesia-free high density spinal cord stimulation for postlaminectomy syndrome in a prescreened population: a prospective case series. Neuromodulation 2016;19:260–267. 83. Wille F, Breel JS, Bakker EW, et al. Altering conventional to high density spinal cord stimulation: an energy dose-response relationship in neuropathic pain therapy. Neuromodulation 2017;20:71–80. 84. Kriek N, Groeneweg JG, Stronks DL, et al. Preferred frequencies and wave forms for spinal cord stimulation in patients with complex regional pain syndrome: a multicentre, double-blind, randomized and placebo-controlled crossover trial. Eur J Pain 2017;21(3):507–519. 85. Coburn B, Sin W. A theoretical study of epidural electrical stimulation of the spinal cord—part I. Finite element analysis of stimulus fields. IEEE Trans Biomed Eng 1985;32:971–977. 86. Holsheimer J, Strujik JJ, Rijkhoff NJ. Contact combinations in epidural spi nal cord stimulation: a comparison by computer modeling. Stereotact Funct Neurosurg 1991;56:220–233. 87. Holsheimer J, Wesselink WA. Effect of anode-cathode configuration on pares thesia coverage in spinal cord stimulation. Neurosurgery 1997;41:654–660. 88. Sances A, Swinotek TJ, Larson SJ, et al. Innovations in neurologic implant systems. Med Instrum 1975;9:213–216. 89. Ranck JB, BeMent SL. The specific impedance of the dorsal columns of the cat: an anisotropic medium. Exp Neurol 1965;11:451–463. 90. Geddes LA, Baker LE. The specific resistance of biological material—a com pendium of data for the biomedical engineer and physiologist. Med Biol Eng 1967;5:271–293. 91. Coburn B. Electrical stimulation of the spinal cord: two-dimensional finite element analysis with particular reference to epidural electrodes. Med Biol Eng Comput 1980;18:573–584. 92. Rusinko JB, Walker CF, Sepulvedo NG. Finite element modeling of poten tials within the human thoracic spinal cord due to applied electrical stimu lation. In: Frontiers of Engineering in Health Care . Vol. 3. Houston, TX: Proceedings of the IEEE Transactions on Biomedical Engineering Confer ence; 1981:76–81. 93. Sin WK, Coburn B. Electrical stimulation of the spinal cord: a further analy sis relating to anatomic factors and tissue properties. Med Biol Eng Comput 1983;21:264–269. 94. Coburn B. A theoretical study of epidural electrical stimulation of the spinal cord—part II. Effects on long myelinated fibers. IEEE Trans Biomed Eng 1985:32:978–986. 95. Holsheimer J, Struijk JJ. How do geometric factors influence epidural spinal cord stimulation? A quantitative analysis by computer modeling. Stereotact Funct Neurosurg 1991:56:234–249. 96. McNeal DR. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 1976;23:329–337. 97. Chiu SY, Ritchie JM, Rogart RB, et al. A quantitative description of mem brane currents in rabbit myelinated nerve. J Physiol 1979;292:149–166.
98. Wesselink WA, Holsheimer J, Boom HB. A model of the electrical be haviour of myelinated sensory nerve fibres based on human data. Med Biol Eng Comput 1999;37(2):228–235. 99. Struijk JJ, Holsheimer J, Barolat G, et al. Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data. IEEE Trans Rehab Eng 1993;1:101–108. 100. Hoekema R, Venner K, Struijk JJ, et al. Multigrid solution of the poten tial field in modeling electrical nerve stimulation. Comput Biomed Res 1998;31:348–362. 101. Oakley JC, Espinosa E, Bothe H, et al. Transverse tripolar spinal cord stim ulation: results of an international multicenter study. Neuromodulation 2006;9(3):183–191. 102. Arle JE, Mei L, Carlson KW, et al. High-frequency stimulation of dorsal column axons: potential underlying mechanism of paresthesia-free neuro pathic pain relief. Neuromodulation 2016;19(4):385–397. 103. Kimble LP, McGuire DB, Dunbar SB, et al. Gender differences in pain characteristics of chronic stable angina and perceived physical limitation in patients with coronary artery disease. Pain 2003;101:45–53. 104. Linderoth B. Spinal cord stimulation in ischemia and ischemic pain. In: Horsch S, Claeys L, eds. Spinal Cord Stimulation III: An Innovative Method in the Treatment of PVD and Angina . Darmstadt, Germany: Steinkopff Verlag; 1995:19–35. 105. Linderoth B, Gherardini G, Ren B, et al. Preemptive spinal cord stimu lation reduces ischemia in an animal model of vasospasm. Neurosurgery 1995;37(2):266–271. 106. Gherardini G, Lundeberg T, Cui JG, et al. Spinal cord stimulation im proves survival in ischemic skin flaps: an experimental study of the possi ble mediation via the calcitonin gene-related peptide. Plast Reconstr Surg 1999;103(4):1221–1228. 107. Croom JE, Foreman RD, Chandler MJ, et al. Cutaneous vasodilation during dorsal column stimulation is mediated by dorsal roots and CGRP. Am J Physiol 1997;272:H950–H957. 108. Croom JE, Foreman RD, Chandler MJ, et al. Reevaluation of the role of the sympathetic nervous system in cutaneous vasodilatation during dorsal spinal cord stimulation: are multiple mechanisms active? Neuromodulation 1998;1:91–101. 109. Tanaka S, Barron KW, Chandler MJ, et al. Low intensity spinal cord stim ulation may induce cutaneous vasodilatation via CGRP release. Brain Res 2001;896:183–187. 110. Tanaka S, Barron KW, Chandler MJ, et al. Role of primary afferent in spinal cord stimulation-induced vasodilatation: characterization of fiber types. Brain Res 2003;959(2):191–198. 111. Tanaka S, Barron KW, Chandler MJ, et al. Local cooling alters neural mechanisms producing changes in peripheral blood flow by spinal cord stimulation. Auton Neurosci 2003;104(2):117–127. 112. Wu M, Komori N, Qin C, et al. Sensory fibers containing vanilloid receptor-1 (VR-1) mediate spinal cord stimulation-induced vasodilation. Brain Res 2006;1107:177–184. 113. Wu M, Komori N, Qin C, et al. Roles of peripheral terminals of tran sient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulation-induced peripheral vasodilation. Brain Res 2007;1156:80–92. 114. Tanaka S, Komori N, Barron KW. Mechanisms of sustained cutane ous vasodilatation induced by spinal cord stimulation. Auton Neurosci 2004;114(1–2):55–60. 115. Freedman RR, Sabharwal SC, Desai N, et al. Increased a -adrenergic respon siveness in idiopathic Raynaud’s disease. Arthritis Rheum 1989:32:61–65. 116. Bunker CB, Terenghi G, Springall DR, et al. Deficiency of calcitonin gene-related peptide in Raynaud’s phenomenon. Lancet 1990;336:1530–1533. 117. Wu M, Linderoth B, Foreman RD. Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: a review of experimental studies. Auton Neurosci 2008;1381(1–20):9–23. 118. Foreman RD, Linderoth B. Neural mechanisms of spinal cord stimulation. In: Hamani C, Moro E, eds. Emerging Horizons in Neuromodulation . Lon don: Elsevier; 2012:87–113. International Review of Neurobiology ; vol 107. 119. Mannheimer C, Eliasson T, Andersson B, et al. Effects of spinal cord stim ulation in angina pectoris induced by pacing and possible mechanisms of action. BMJ 1993;307:477–480. 120. Mobilia G, Zuin G, Zanco P, et al. Effects of spinal cord stimulation on regional myocardial blood flow in patients with refractory angina. A pos itron emission tomography study [in Italian]. G Ital Cardiol 1998;28(10): 1113–1119. 121. Hautvast RW, Blanksma PK, DeJongste MJ, et al. Effect of spinal cord stim ulation on myocardial blood flow assessed by positron emission tomogra phy in patients with refractory angina pectoris. Am H Cardiol 1996;77: 462–467. 122. Kingma JG Jr, Linderoth B, Ardell JL, et al. Neuromodulation therapy does not influence blood flow distribution or left-ventricular dynamics during acute myocardial ischemia. Auton Neurosci 2001;91(1–2):47–54. 123. Eliasson T, Augustinsson LE, Manneheimer C. Spinal cord stimulation in severe angina pectoris: presentation of current studies, indications and practical experience. Pain 1996;65:169–179. 124. Cardinal R, Ardell J, Linderoth B, et al. Spinal cord activation differen tially modulates ischemic electrical responses to different stressors in canine ventricles. Autonom Neurosci 2004;111(1):34–47.
Made with FlippingBook - professional solution for displaying marketing and sales documents online