8-A860A-2018-Books-00091Rathmell5e_Ch096-NO CROP-ROUND1

16

PART FIVE  METHODS FOR SYMPTOMATIC CONTROL

68. Eriksson MB, Sjölund BH, Nielzén S. Long term results of peripheral con­ ditioning stimulation as an analgesic measure in chronic pain. Pain 1979;6: 335–347. 69. De Ridder D, Vanneste S, Plazier M, et al. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery 2010;66:986–990. 70. De Ridder D, Plazier M, Kamerling N, et al. Burst spinal cord stimulation for limb and back pain. World Neurosurg 2013;80:642–649. 71. De Ridder D, van der Loo E, Van der Kelen K, et al. Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially? Int J Med Sci 2007;9:242–246. 72. De Ridder D, Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation 2016;19(1):47–59. 73. Stancák A, Kozák J, Vrba I, et al. Functional magnetic resonance imaging of cerebral activation during spinal cord stimulation in failed back surgery syndrome patients. Eur J Pain 2008;12:137–148. 74. Tang R, Martinez M, Goodman-Keiser M, et al. Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model. Neuromodulation 2014;17:143–151. 75. Crosby N, Weisshaar C, Smith J, et al. Burst and tonic spinal cord stimu­ lation differentially activate GABAergic mechanisms to attenuate pain in a rat model of cervical radiculopathy. IEEE Trans Biomed Eng 2015;62(6): 1604–1613. 76. Cui JG, Linderoth B, Meyerson BA. Incidence of mononeuropathy in rats is influenced by pre-emptive alteration of spinal excitability. Eur J Pain 1997;1:53–59. 77. Ultenius C, Song Z, Meyerson BA, et al. Spinal GABAergic mechanisms in the effects of spinal cord stimulation in a rodent model of neuropathic pain: is GABA synthesis involved? Neuromodulation 2013;16(2):114–120. 78. Crosby ND, Goodman Keiser MD, Smith JR, et al. Stimulation parameters define the effectiveness of burst spinal cord stimulation in a rat model of neuropathic pain. Neuromodulation 2015;18:1–8. 79. Shealy CN. Dorsal column electrohypalgesia. Headache 1969;9(2):99–102. 80. Waltz JM. Spinal cord stimulation. A quarter century of development and investigation. A review of its development and effectiveness in 1,336 cases. Stereotact Funct Neurosurgery 1997;69(1–4 pt 2):288–299. 81. Miller J, Eldabe S, Buchser E, et al. Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation 2016;19(4):373–384. 82. Sweet J, Badjatiya A, Tan D, et al. Paresthesia-free high density spinal cord stimulation for postlaminectomy syndrome in a prescreened population: a prospective case series. Neuromodulation 2016;19:260–267. 83. Wille F, Breel JS, Bakker EW, et al. Altering conventional to high density spinal cord stimulation: an energy dose-response relationship in neuropathic pain therapy. Neuromodulation 2017;20:71–80. 84. Kriek N, Groeneweg JG, Stronks DL, et al. Preferred frequencies and wave­ forms for spinal cord stimulation in patients with complex regional pain syndrome: a multicentre, double-blind, randomized and placebo-controlled crossover trial. Eur J Pain 2017;21(3):507–519. 85. Coburn B, Sin W. A theoretical study of epidural electrical stimulation of the spinal cord—part I. Finite element analysis of stimulus fields. IEEE Trans Biomed Eng 1985;32:971–977. 86. Holsheimer J, Strujik JJ, Rijkhoff NJ. Contact combinations in epidural spi­ nal cord stimulation: a comparison by computer modeling. Stereotact Funct Neurosurg 1991;56:220–233. 87. Holsheimer J, Wesselink WA. Effect of anode-cathode configuration on pares­ thesia coverage in spinal cord stimulation. Neurosurgery 1997;41:654–660. 88. Sances A, Swinotek TJ, Larson SJ, et al. Innovations in neurologic implant systems. Med Instrum 1975;9:213–216. 89. Ranck JB, BeMent SL. The specific impedance of the dorsal columns of the cat: an anisotropic medium. Exp Neurol 1965;11:451–463. 90. Geddes LA, Baker LE. The specific resistance of biological material—a com­ pendium of data for the biomedical engineer and physiologist. Med Biol Eng 1967;5:271–293. 91. Coburn B. Electrical stimulation of the spinal cord: two-dimensional finite element analysis with particular reference to epidural electrodes. Med Biol Eng Comput 1980;18:573–584. 92. Rusinko JB, Walker CF, Sepulvedo NG. Finite element modeling of poten­ tials within the human thoracic spinal cord due to applied electrical stimu­ lation. In: Frontiers of Engineering in Health Care . Vol. 3. Houston, TX: Proceedings of the IEEE Transactions on Biomedical Engineering Confer­ ence; 1981:76–81. 93. Sin WK, Coburn B. Electrical stimulation of the spinal cord: a further analy­ sis relating to anatomic factors and tissue properties. Med Biol Eng Comput 1983;21:264–269. 94. Coburn B. A theoretical study of epidural electrical stimulation of the spinal cord—part II. Effects on long myelinated fibers. IEEE Trans Biomed Eng 1985:32:978–986. 95. Holsheimer J, Struijk JJ. How do geometric factors influence epidural spinal cord stimulation? A quantitative analysis by computer modeling. Stereotact Funct Neurosurg 1991:56:234–249. 96. McNeal DR. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 1976;23:329–337. 97. Chiu SY, Ritchie JM, Rogart RB, et al. A quantitative description of mem­ brane currents in rabbit myelinated nerve. J Physiol 1979;292:149–166.

 98. Wesselink WA, Holsheimer J, Boom HB. A model of the electrical be­ haviour of myelinated sensory nerve fibres based on human data. Med Biol Eng Comput 1999;37(2):228–235.  99. Struijk JJ, Holsheimer J, Barolat G, et al. Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data. IEEE Trans Rehab Eng 1993;1:101–108. 100. Hoekema R, Venner K, Struijk JJ, et al. Multigrid solution of the poten­ tial field in modeling electrical nerve stimulation. Comput Biomed Res 1998;31:348–362. 101. Oakley JC, Espinosa E, Bothe H, et al. Transverse tripolar spinal cord stim­ ulation: results of an international multicenter study. Neuromodulation 2006;9(3):183–191. 102. Arle JE, Mei L, Carlson KW, et al. High-frequency stimulation of dorsal column axons: potential underlying mechanism of paresthesia-free neuro­ pathic pain relief. Neuromodulation 2016;19(4):385–397. 103. Kimble LP, McGuire DB, Dunbar SB, et al. Gender differences in pain characteristics of chronic stable angina and perceived physical limitation in patients with coronary artery disease. Pain 2003;101:45–53. 104. Linderoth B. Spinal cord stimulation in ischemia and ischemic pain. In: Horsch S, Claeys L, eds. Spinal Cord Stimulation III: An Innovative Method in the Treatment of PVD and Angina . Darmstadt, Germany: Steinkopff Verlag; 1995:19–35. 105. Linderoth B, Gherardini G, Ren B, et al. Preemptive spinal cord stimu­ lation reduces ischemia in an animal model of vasospasm. Neurosurgery 1995;37(2):266–271. 106. Gherardini G, Lundeberg T, Cui JG, et al. Spinal cord stimulation im­ proves survival in ischemic skin flaps: an experimental study of the possi­ ble mediation via the calcitonin gene-related peptide. Plast Reconstr Surg 1999;103(4):1221–1228. 107. Croom JE, Foreman RD, Chandler MJ, et al. Cutaneous vasodilation during dorsal column stimulation is mediated by dorsal roots and CGRP. Am J Physiol 1997;272:H950–H957. 108. Croom JE, Foreman RD, Chandler MJ, et al. Reevaluation of the role of the sympathetic nervous system in cutaneous vasodilatation during dorsal spinal cord stimulation: are multiple mechanisms active? Neuromodulation 1998;1:91–101. 109. Tanaka S, Barron KW, Chandler MJ, et al. Low intensity spinal cord stim­ ulation may induce cutaneous vasodilatation via CGRP release. Brain Res 2001;896:183–187. 110. Tanaka S, Barron KW, Chandler MJ, et al. Role of primary afferent in spinal cord stimulation-induced vasodilatation: characterization of fiber types. Brain Res 2003;959(2):191–198. 111. Tanaka S, Barron KW, Chandler MJ, et al. Local cooling alters neural mechanisms producing changes in peripheral blood flow by spinal cord stimulation. Auton Neurosci 2003;104(2):117–127. 112. Wu M, Komori N, Qin C, et al. Sensory fibers containing vanilloid receptor-1 (VR-1) mediate spinal cord stimulation-induced vasodilation. Brain Res 2006;1107:177–184. 113. Wu M, Komori N, Qin C, et al. Roles of peripheral terminals of tran­ sient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulation-induced peripheral vasodilation. Brain Res 2007;1156:80–92. 114. Tanaka S, Komori N, Barron KW. Mechanisms of sustained cutane­ ous vasodilatation induced by spinal cord stimulation. Auton Neurosci 2004;114(1–2):55–60. 115. Freedman RR, Sabharwal SC, Desai N, et al. Increased a -adrenergic respon­ siveness in idiopathic Raynaud’s disease. Arthritis Rheum 1989:32:61–65. 116. Bunker CB, Terenghi G, Springall DR, et al. Deficiency of calcitonin gene-related peptide in Raynaud’s phenomenon. Lancet 1990;336:1530–1533. 117. Wu M, Linderoth B, Foreman RD. Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: a review of experimental studies. Auton Neurosci 2008;1381(1–20):9–23. 118. Foreman RD, Linderoth B. Neural mechanisms of spinal cord stimulation. In: Hamani C, Moro E, eds. Emerging Horizons in Neuromodulation . Lon­ don: Elsevier; 2012:87–113. International Review of Neurobiology ; vol 107. 119. Mannheimer C, Eliasson T, Andersson B, et al. Effects of spinal cord stim­ ulation in angina pectoris induced by pacing and possible mechanisms of action. BMJ 1993;307:477–480. 120. Mobilia G, Zuin G, Zanco P, et al. Effects of spinal cord stimulation on regional myocardial blood flow in patients with refractory angina. A pos­ itron emission tomography study [in Italian]. G Ital Cardiol 1998;28(10): 1113–1119. 121. Hautvast RW, Blanksma PK, DeJongste MJ, et al. Effect of spinal cord stim­ ulation on myocardial blood flow assessed by positron emission tomogra­ phy in patients with refractory angina pectoris. Am H Cardiol 1996;77: 462–467. 122. Kingma JG Jr, Linderoth B, Ardell JL, et al. Neuromodulation therapy does not influence blood flow distribution or left-ventricular dynamics during acute myocardial ischemia. Auton Neurosci 2001;91(1–2):47–54. 123. Eliasson T, Augustinsson LE, Manneheimer C. Spinal cord stimulation in severe angina pectoris: presentation of current studies, indications and practical experience. Pain 1996;65:169–179. 124. Cardinal R, Ardell J, Linderoth B, et al. Spinal cord activation differen­ tially modulates ischemic electrical responses to different stressors in canine ventricles. Autonom Neurosci 2004;111(1):34–47.

Made with FlippingBook - professional solution for displaying marketing and sales documents online