Howley. Virología ADN_7ed

64

Virología. Volumen 2. Virus de ADN

36. Campo MS. Animal models of papillomavirus pathogenesis. Virus Res 2002;89:249–261. 37. Campo MS, Moar MH, Sartirana ML, et al. The presence of bovine papillomavirus type 4 DNA is not required for the progression to, or maintenance of, the malignant state in cancers of the alimentary tract in cattle. EMBO J 1985;4:1819–1825. 38. Campos-Leon K, Wijendra K, Siddiqa A, et al. Association of human papillomavirus 16 E2 with Rad50-interacting protein 1 enhances viral DNA replication. J Virol 2017;91(5). 39. Carson A, Khan SA. Characterization of transcription factor binding to human papilloma- virus type 16 DNA during cellular differentiation. J Virol 2006;80(9):4356–4362. 40. Chambers G, Ellsmore VA, O'Brien PM, et al. Association of bovine papillomavirus with the equine sarcoid. J Gen Virol 2003;84(Pt 5):1055–1062. 41. Chan SY, Delius H, Halpern AL, et al. Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy. J Virol 1995;69:3074–3083. 42. Chen EY, Howley PM, Levinson AD, et al. The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature 1982;299:529–534. 43. Chen JJ, Reid CE, Band V, et al. Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 1995;269:529–531. 44. Chen XS, Garcea RL, Goldberg I, et al. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 2000;5:557–567. 45. Chen Z, Terai M, Fu L, et al. Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J Virol 2005;79(11):7014–7023. 46. Cheng S, Schmidt-Grimminger DC, Murant T, et al. Differentiation-dependent up-regu- lation of the human papillomavirus E7 gene reactivates cellular DNA replication in supra- basal differentiated keratinocytes. Genes Dev 1995;9:2335–2349. 47. Chiang C, Pauli EK, Biryukov J, et al. The human papillomavirus E6 oncoprotein targets USP15andTRIM25tosuppressRIG-I-mediatedinnateimmunesignaling. JVirol 2018;92(6): e01737-17. 48. Ciuffo G. Innesto positivo con filtrato di verruca volgare. Gior Ital Mal Venereol 1907;48:12–17. 49. Conrad M, Bubb VJ, Schlegel R. The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol 1993;67:6170–6178. 50. Conway MJ, Alam S, Ryndock EJ, et al. Tissue-spanning redox gradient-dependent assem- bly of native human papillomavirus type 16 virions. J Virol 2009;83(20):10515–10526. 51. Coursey TL, McBride AA. Hitchhiking of viral genomes on cellular chromosomes. Annu Rev Virol 2019;6(1):275–296. 52. Crawford LV, Crawford EM. A comparative study of polyoma and papilloma viruses. Virology 1963;21:258–263. 53. Danos O, Engel LW, Chen EY, et al. Comparative analysis of the human type 1a and bovine type 1 papillomavirus genomes. J Virol 1983;46:557–566. 54. Danos O, Katinka M, Yaniv M. Human papillomavirus la complete DNA sequence: a novel type of genome organization among Papovaviridae. EMBO J 1982;1:231–236. 55. Day PM, Baker CC, Lowy DR, et al. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci U S A 2004;101(39):14252–14257. 56. DeCaprio JA, Ludlow JW, Figge J, et al. SV40 large tumor antigen forms a specific com- plex with the product of the retinoblastoma susceptibility gene. Cell 1988;54:275–283. 57. Delcuratolo M, Fertey J, Schneider M, et al. Papillomavirus-associated tumor formation critically depends on c-Fos expression induced by viral protein E2 and bromodomain pro- tein Brd4. PLoS Pathog 2016;12(1):e1005366. 58. DeMasi J, Chao MC, Kumar AS, et al. Bovine papillomavirus E7 oncoprotein inhibits anoikis. J Virol 2007;81(17):9419–9425. 59. DeMasi J, Huh KW, Nakatani Y, et al. Bovine papillomavirus E7 transforma- tion function correlates with cellular p600 protein binding. Proc Natl Acad Sci U S A 2005;102(32):11486–11491. 60. DeSmet M, Kanginakudru S, Rietz A, et al. The replicative consequences of papil- lomavirus E2 protein binding to the origin replication factor ORC2. PLoS Pathog 2016;12(10):e1005934. 61. DiGiuseppe S, Luszczek W, Keiffer TR, et al. Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis. Proc Natl Acad Sci U S A 2016;113(22):6289–6294. 62. DiMaio D, Lai CC, Mattoon D. The platelet-derived growth factor beta receptor as a target of the bovine papillomavirus E5 protein. Cytokine Growth Factor Rev 2000;11(4):283–293. 63. Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer 2018;17(1):164. 64. Doorbar J. The papillomavirus life cycle. J Clin Virol 2005;32(Suppl 1):S7–S15. 65. Doorbar J, Ely S, Sterling J, et al. Specific interaction between HPV-16 E1-E4 and cyto- keratins results in collapse of the epithelial cell intermediate filament network. Nature 1991;352:824–827. 66. Doorbar J, Quint W, Banks L, et al. The biology and life-cycle of human papillomaviruses. Vaccine 2012;30(Suppl 5):F55–F70. 67. Dotto GP. Notch tumor suppressor function. Oncogene 2008;27(38):5115–5123. 68. Dreer M, Fertey J, van de Poel S, et al. Interaction of NCOR/SMRT repressor com- plexes with papillomavirus E8^E2C proteins inhibits viral replication. PLoS Pathog 2016;12(4):e1005556. 69. Dreer M, van de Poel S, Stubenrauch F. Control of viral replication and transcription by the papillomavirus E8^E2 protein. Virus Res 2017;231:96–102. 70. Drews CM, Case S, Vande Pol SB. E6 proteins from high-risk HPV, low-risk HPV, and animal papillomaviruses activate the Wnt/beta-catenin pathway through E6AP-dependent degradation of NHERF1. PLoS Pathog 2019;15(4):e1007575. 71. Duensing S, Lee LY, Duensing A, et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncou- pling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A 2000;97:10002–10007. 72. Duensing S, Munger K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 2002;62(23):7075–7082.

73. Durst M, Gissmann L, Idenburg H, et al. A papillomavirus DNA from a cervical carci- noma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A 1983;80:3812–3815. 74. Dvoretzky I, Shober R, Chattopadhyay SK, et al. A quantitative in vitro focus assay for bovine papilloma virus. Virology 1980;103:369–375. 75. Dyson N, Guida P, Munger K, et al. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular pro- teins. J Virol 1992;66:6893–6902. 76. Dyson N, Howley PM, Munger K, et al. The human papillomavirus-16 E7 oncoprotein is able to bind the retinoblastoma gene product. Science 1989;243:934–937. 77. Edmonds C, Vousden KH. A point mutational analysis of human papillomavirus type 16 E7 protein. J Virol 1989;63:2650–2656. 78. Eichten A, Rud DS, Grace M, et al. Molecular pathways executing the “trophic sentinel” response in HPV-16 E7-expressing normal human diploid fibroblasts upon growth factor deprivation. Virology 2004;319:81–93. 79. Enemark EJ, Chen G, Vaughn DE, et al. Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus. Mol Cell 2000;6:149–158. 80. Enemark EJ, Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006;442(7100):270–275. 81. Favre M, Breitburd F, Croissant O, et al. Chromatin-like structures obtained after alkaline disruption of bovine and human papillomaviruses. J Virol 1977;21(3):1205–1209. 82. Favre-Bonvin A, Reynaud C, Kretz-Remy C, et al. Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transform- ing growth factor beta signaling and triggers its degradation by the proteasome. J Virol 2005;79:4229–4237. 83. Fehrmann F, Klumpp DJ, Laimins LA. Human papillomavirus type 31 E5 protein sup- ports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol 2003;77(5):2819–2831. 84. Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem 2004;279(24):25729–25744. 85. Flores ER, Allen-Hoffmann BL, Lee D, et al. The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol 2000;74(14):6622–6631. 86. Flores ER, Lambert PF. Evidence for a switch in the mode of human papillomavirus DNA replication during the viral life cycle. J Virol 1997;71:7167–7179. 87. Florin L, Schafer F, Sotlar K, et al. Reorganization of nuclear domain 10 induced by pap- illomavirus capsid protein l2. Virology 2002;295(1):97–107. 88. Fradet-Turcotte A, Bergeron-Labrecque F, Moody CA, et al. Nuclear accumulation of the papillomavirus E1 helicase blocks S-phase progression and triggers an ATM-dependent DNA damage response. J Virol 2011;85(17):8996–9012. 89. Funk JO, Waga S, Harry JB, et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked interaction with the HPV-16 E7 oncoprotein. Genes Dev 1997;11:2090–2100. 90. Gardiol D, Kuhne C, Glaunsinger B, et al. Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 1999;18:5487–5496. 91. Garnett TO, Filippova M, Duerksen-Hughes PJ. Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ 2006;13(11):1915–1926. 92. Genther SM, Sterling S, Duensing S, et al. Quantitative role of the human pap- illomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol 2003;77(5):2832–2842. 93. Genther Williams SM, Disbrow GL, Schlegel R, et al. Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res 2005;65:6534–6542. 94. Gewin L, Galloway DA. E box-dependent activation of telomerase by human papilloma- virus type 16 E6 does not require induction of c-myc. J Virol 2001;75(15):7198–7201. 95. Gewin L, Myers H, Kiyono T, et al. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev 2004;18(18):2269–2282. 96. Gilbert DM, Cohen SN. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle. Cell 1987;50:59–68. 97. Glaunsinger BA, Lee SS, Thomas M, et al. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 2000;19:5270–5280. 98. Goldstein DJ, Schlegel R. The E5 oncoprotein of bovine papillomavirus binds to a 16 kd cellular protein. EMBO J 1990;9(1):137–145. 99. Graham SV. Keratinocyte differentiation-dependent human papillomavirus gene regula- tion. Viruses 2017;9(9):245. 100. Guan J, Bywaters SM, Brendle SA, et al. Cryoelectron microscopy maps of human papillomavirus 16 reveal L2 densities and heparin binding site. Structure 2017;25(2): 253–263. 101. Guion L, Bienkowska-Haba M, DiGiuseppe S, et al. PML nuclear body-residing proteins sequentially associate with HPV genome after infectious nuclear delivery. PLoS Pathog 2019;15(2):e1007590. 102. Hagensee ME, Olson NH, Baker TS, et al. Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids. J Virol 1994;68:4503–4505.

103. Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 1993;67:315–322. 104. Harden ME, Munger K. Human papillomavirus molecular biology. Mutat Res Rev Mutat Res 2017;772:3–12. 105. Hasche D, Rosl F. Mastomys species as model systems for infectious diseases. Viruses 2019;11(2):182. SAMPLE

Made with FlippingBook Annual report maker