Halperin7e_CH29

666

S E C T I O N I I  Techniques, Modalities, and Modifiers in Radiation Oncology

70. Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macro- molecules into the brain. Proc Natl Acad Sci 1994;91:2076–2080. 71. Patel SJ, Shapiro WR, Laske DW, et al. Safety and feasibility of convection- enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery 2005;56:1243–1252. 72. Epenetos AA, Hird V, Lambert H, et al. Long term survival of patients with advanced ovarian cancer treated with intraperitoneal radioimmunotherapy. Int J Gynecol Cancer 2000;10:44–46. 73. Verheijen RH, Massuger LF, Benigno BB, et al. Phase III trial of intraperito- neal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J Clin Oncol 2006;24:571–578. 74. Elgqvist J, Hultborn R, Lindegren S, et al. Ovarian Cancer: Background and Clinical Perspectives. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:352–355. 75. Oei AL, Verheijen RH, Seiden MV, et al. Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal con- solidation treatment with yttrium-90-labeled murine HMFG1 without improve- ment in overall survival. Int J Cancer 2007;120:2710–2714. 76. Wallner PE. Unconjugated radiopharmaceuticals. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:294–297. 77. U.S. Food and Drug Administration. Radiation-emitting products. Available at: https://www.fda.gov/Radiation-EmittingProducts/default.htm. Accessed May 12, 2017. 78. Reisfield GM, Silberstein EB, Wilson GR. Radiopharmaceuticals for the pallia- tion of painful bone metastases. Am J Hosp Palliat Care 2005;22:41–46. 79. Hindorf C, Flux GD, Ibisch C, et al. Clinical dosimetry in the treatment of bone tumors: old and new agents. Q J Nucl Med Mol Imaging 2011;55:198–204. 80. Jansen DR, Krijger GC, Kolar ZI, et al.Targeted radiotherapy of bone malignan- cies. Curr Drug Discov Technol 2010;7:233–246. 81. Zafeirakis A, Zissimopoulos A, Baziotis N, et al. Introduction of a new semi- quantitative index with predictive implications in patients with painful osse- ous metastases after (186)Re-HEDP therapy. Q J Nucl Med Mol Imaging 2011;55:91–102. 82. Biersack HJ, Palmedo H, Andris A, et al. Palliation and survival after repeated (188)Re-HEDP therapy of hormone-refractory bone metastases of prostate cancer: a retrospective analysis. J Nucl Med 2011;52:1721–1726. 83. Liu C, Brasic JR, Liu X, et al. Timing and optimized acquisition parameters for the whole-body imaging of 177Lu-EDTMP toward performing bone pain pallia- tion treatment. Nucl Med Commun 2012;33:90–96. 84. Ogawa K, Kawashima H, Shiba K, et al. Development of [(90)Y]DOTA- conjugated bisphosphonate for treatment of painful bone metastases. Nucl Med Biol 2009;36:129–135. 85. Das T, Chakraborty S, Sarma HD, et al. (170)Tm-EDTMP: a potential cost- effective alternative to (89)SrCl(2) for bone pain palliation. Nucl Med Biol 2009;36:561–568. 86. Silberstein EB. Teletherapy and radiopharmaceutical therapy of painful bone metastases. Sem Nuc Med 2005;35:152–158. 87. Nair N. Relative efficacy of 32P and 89Sr in palliation of skeletal metastases. J Nucl Med 1999;40:256–261. 88. Roque I, Figuls M, Martinez-Zapata MJ, et al. Radioisotopes for metastatic bone pain. Cochrane Database Syst Rev 2011;(6):CD003347. 89. Spratt DE, Zaki BI, Hartford AC, et al. ACR practice parameter for the perfor- mance of therapy with unsealed radiopharmaceutical sources. Clin Nucl Med 2016;41:106–117. 90. Lutz S, Balboni T, Jones J, et al. Palliative radiation therapy for bone metas- tases: update of an ASTRO evidence-based guideline. Pract Radiat Oncol 2017;7:4–12. 91. Mattsson S, Johansson L, Jonsson H, et al. Radioactive iodine in thyroid medi- cine—how it started in Sweden and some of today’s challenges. Acta Oncol 2006;45:1031–1036. 92. International Atomic Energy Agency. Nuclear Medicine in Thyroid Cancer Management: A Practical Approach . Vienna, Austria: International Atomic Energy Agency, 2009. 93. Kulkarni K, Van Nostrand D, Atkins F. 131-I ablation and treatment of well- differentiated thyroid cancer. In: Speer TW, ed. Targeted Radionuclide Therapy . Philadelphia: Lippincott Williams & Wilkins, 2011:281–293. 94. Reiners C, Dietlein M, Luster M. Radio-iodine therapy in differentiated thy- roid cancer: indication and procedure. Best Pract Res Clin Endocrinol Metab 2008;22:989–1007. 95. Hay ID, McConahey WM, Goellner JR. Managing patients with papillary thyroid carcinoma: insights gained from the Mayo Clinic’s experience of treating 2,512 consecutive patients during 1940 through 2000. Trans Am Clin Climatol Assoc 2002;113:241–260.

96. Vianello F, Mazzarotto R, Mian C, et al. Clinical outcome of low-risk differ- entiated thyroid cancer patients after radioiodine remnant ablation and recombinant human thyroid-stimulating hormone preparation. Clin Oncol 2012;24:162–168. 97. Mayson SE,Yoo DC, Gopalakrishnan G.The evolving use of radioiodine therapy in differentiated thyroid cancer. Oncology 2015;88:247–256. 98. Goldsmith SJ. Radioactive iodine therapy of differentiated thyroid carcinoma: redesigning the paradigm. Mol Imaging Radionucl Ther 2017;26:74–79. 99. Mazzaferri EL, Kloos RT. Using recombinant human TSH in the management of well-differentiated thyroid cancer: current strategies and future directions. Thyroid 2000;10:767–778. 100. Dorn R, Kopp J,Vogt H, et al. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med 2003;44:451–456. 101. Siegel HJ, Luck JV Jr, Siegel M, et al. Advances in radionuclide therapeutics in orthopaedics. J Am Acad Orthop Surg 2004;12:55–64. 102. Soroa VE, del Huerto Velazquez Espeche M, Giannone C, et al. Effects of radio- synovectomy with p-32 colloid therapy in hemophilia and rheumatoid arthritis. Cancer Biotherm Radiopharm 2005;20:344–348. 103. Young RC, Brody MF, Nieberg RK, et al. Adjuvant treatment for early ovar- ian cancer: a randomized phase III trial of intraperitoneal 32P or intravenous cyclophosphamide and cisplatin—a gynecologic oncology group study. J Clin Oncol 2003;21:4350–4355. 104. Bouchet LG, Bolch WE, Goddu SM, et al. Considerations in the selection of radiopharmaceuticals for palliation of bone pain from metastatic osseous lesions. J Nucl Med 2000;41:682–687. 105. Firusian N, Dempke W. An early phase II study of intratumoral P-32 chromic phosphate injection therapy for patients with refractory solid tumors and soli- tary metastases. Cancer 1999;85;980–987. 106. Rosemurgy A, Luzardo G, Cooper J, et al. 32P as adjunct to standard therapy for locally advanced unresectable pancreatic cancer: a randomized trial. J Gastrointest Surg 2008;12:682–688. 107. Porter AT, McEwan AJ, Powe JE, et al. Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irra- diation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys 1993;25:805–813. 108. Bauman G, Charette M, Reid R, et al. Radiopharmaceuticals for the pallia- tion of painful bone metastasis-a systemic review. Radiother Oncol 2005;75: 258–270. 109. James ND, Pirrie SJ, Pope AM, et al. Clinical outcomes and survival following treatment of metastatic castrate-refractory prostate cancer with docetaxel alone or with strontium-89, zoledronic acid, or both: the TRAPEZE randomized clinical trial. JAMA Oncol 2016;2:493–499. 110. Sartor O. Overview of samarium Sm 153 lexidronam in the treatment of painful metastatic disease of bone. Rev Urol 2004;6(Suppl 10);S3–S12. 111. Autio KA, Scer HI, Morris MJ. Therapeutic strategies for bone metasta- ses and their clinical sequelae in prostate cancer. Curr Treat Options Oncol 2012;13:174–188. 112. Anderson PM, Wiseman GA, Erlandson L, et al. Gemcitabine radiosensitiza- tion after high-dose samarium for osteoblastic osteosarcoma. Clin Cancer Res 2005;11:6895–6900. 113. Wilky BA, Loeb DM. Beyond palliation: therapeutic applications of 153Samarium-EDTMP. Clin Exp Pharmacol 2013;3:1–20. 114. Parker C, Nilsson S, Heinrich D, et al.Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013;369:213–223. 115. Hoskin P, Sartor O, O’Sullivan JM, et al. Efficacy and safety of radium-223 dichloride in patients with castrate-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified sub- group analysis from the randomized, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol 2014;15(12):1397–406 116. Sartor O, Hoskin P, Coleman RE, et al. Chemotherapy following radium-223 dichloride treatment in ALSYMPCA. Prostate 2016;76:905–916. 117. Denis-Bacelar AM, Chittenden SJ, Dearnaley DP, et al. Phase I/II trials of 186Re-HEDP in metastatic castrate-resistant prostate cancer: post-hoc analy- sis of the impact of administered activity and dosimetry on survival. Eur J Nucl Med Mol Imaging 2017;44:620–629. 118. Liepe K, Runge R, Kotzerke J. The benefit of bone-seeking radiopharmaceu- ticals in the treatment of metastatic bone disease. J Cancer Res Clin Oncol 2005;131:60–66. 119. Zhang H, Tian M, Li S, et al. Rhenium-188-HEDP therapy for the palliation of pain due to osseous metastases in lung cancer patients. Cancer Biother Radiopharm 2003;18:719–726. 120. Erfani M, Rahmani N, Doroudi A, et al. Preparation and evaluation of rhenium- 188-pamidronate as a palliative treatment in bone metastasis. Nucl Med Biol 2017;49:1-7.

Made with FlippingBook - professional solution for displaying marketing and sales documents online