Tornetta Rockwood Adults 9781975137298 FINAL VERSION

41

CHAPTER 1 • Biomechanics of Fractures and Fracture Fixation

138. Kubiak EN, Haller JM, Kemper DD, et al. Does the lateral plate need to overlap the stem to mitigate stress concentration when treating Vancouver C periprosthetic supracondylar femur fracture? J Arthroplasty . 2015;30(1):104–108. 139. Kutzner I, Heinlein B, Graichen F, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech . 2010;43(11):2164– 2173. 140. Lakes RS, Katz JL. Viscoelastic properties of wet cortical bone—III. A non-linear constitutive equation. J Biomech . 1979;12(9):689–698. 141. Larsson S, Elloy M, Hansson LI. Fixation of trochanteric hip fractures. A cadaver study of static and dynamic loading. Acta Orthop Scand . 1987;58(4):365–368. 142. Lehmann W, Rupprech tM, Hellmers N, et al. Biomechanical evaluation of peri- and interprosthetic fractures of the femur. J Trauma . 2010;68(6):1459–1463. 143. Lenz M, Lehmann W, Wähnert D. Periprosthetic fracture fixation in osteoporotic bone. Injury . 2016;47(suppl 2):S44–S50. 144. Liew AS, Johnson JA, Patterson SD, et al. Effect of screw placement on fixation in the humeral head. J Shoulder Elbow Surg . 2000;9(5):423–426. 145. Lindahl H, Malchau H, Odén A, et al. Risk factors for failure after treatment of a periprosthetic fracture of the femur. J Bone Joint Surg Br . 2006;88(1):26–30. 146. Lotz JC, Cheal EJ, Hayes WC. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporosis Int . 1995;5(4):252–261. 147. Lujan TJ, Henderson CE, Madey SM, et al. Locked plating of distal femur frac- tures leads to inconsistent and asymmetric callus formation. J Orthop Trauma . 2010;24(3):156–162. 148. Madey SM, Tsai S, Fitzpatrick DC, et al. Dynamic fixation of humeral shaft frac- tures using active locking plates: a prospective observational study. Iowa Orthop J . 2017;37:1–10. 149. Marti A, Fankhauser C, Frenk A, et al. Biomechanical evaluation of the less inva- sive stabilization system for the internal fixation of distal femur fractures. J Orthop Trauma . 2001;15(7):482–487. 150. McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br . 1978;60-B(2):150–162. 151. Moro T, Takatori Y, Kyomoto M, et al. Long-term hip simulator testing of the arti- ficial hip joint bearing surface grafted with biocompatible phospholipid polymer. J Orthop Res . 2014;32(3):369–376. 152. Mow VC, Huiskes R. Basic Orthopaedic Biomechanics and Mechano-Biology . 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005. 153. Müller ME, Allgöwer M, Schneider R, et al. Dritte, erweiterte und völlig überarbe- iteteAuflage, eds. Manual der Osteosynthese . Berlin: Springer-Verlag; 1992. 154. Murray IA, Johnson GR. A study of the external forces and moments at the shoul- der and elbow while performing every day tasks. Clin Biomech (Bristol, Avon) . 2004;19(6):586–594. 155. Niikura T, Lee SY, Sakai Y, et al. Causative factors of fracture nonunion: the pro- portions of mechanical, biological, patient-dependent, and patient-independent factors. J Orthop Sci . 2014;19(1):120–124. 156. Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater . 2011;2011:836587. 157. Oh JK, Sahu D, Ahn YH, et al. Effect of fracture gap on stability of compression plate fixation: a finite element study. J Orthop Res . 2010;28(4):462–467. 158. Osterhoff G, Morgan EF, Shefelbine SJ, et al. Bone mechanical properties and changes with osteoporosis. Injury . 2016;47(suppl 2):S11–S20. 159. Panagiotopoulos E, Fortis AP, Lambiris E, et al. Rigid or sliding plate. A mechanical evaluation of osteotomy fixation in sheep. Clin Orthop Relat Res . 1999;(358):244– 249. 160. Park SH, O’Connor K, McKellop H, et al. The influence of active shear or compres- sive motion on fracture-healing. J Bone Joint Surg Am . 1998;80:868–878. 161. Parker MJ, Twemlow TR. Spontaneous hip fractures 44/872 in a prospective study. Acta Orthop Scand . 2009;68(4):325–326. 162. Patel R, Neu CP, Curtiss S, et al. Crutch weightbearing on comminuted humeral shaft fractures: a biomechanical comparison of large versus small fragment fixation for humeral shaft fractures. J Orthop Trauma . 2011;25(5):300–305. 163. Paxinos O, Tsitsopoulos PP, Zindrick MR, et al. Evaluation of pullout strength and failure mechanism of posterior instrumentation in normal and osteopenic thoracic vertebrae. J Neurosurg Spine . 2010;13(4):469–476. 164. Peck JB, Charpentier PM, Flanagan BP, et al. Reducing fracture risk adjacent to a plate with an angulated locked end screw. J Orthop Trauma . 2015;29(11):e431– e436. 165. Penzkofer R, Maier M, Nolte A, et al. Influence of intramedullary nail diameter and locking mode on the stability of tibial shaft fracture fixation. Arch Orthop Trauma Surg . 2009;129(4):525–531. 166. Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res . 1979;138:175–196. 167. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br . 2002;84(8):1093–1110. 168. Perren SM. Fracture healing. The evolution of our understanding. Acta Chir Orthop Traumatol Cech . 2008;75(4):241–246. 169. Perren SM, Huggler A, Russenberger M, et al. The reaction of cortical bone to com- pression. Acta Orthop Scand Suppl . 1969;125:19–29. 170. Plausinis D, Greaves C, Regan WD, et al. Ipsilateral shoulder and elbow replace- ments: on the risk of periprosthetic fracture. Clin Biomech . 2005;20(10):1055–1063. 171. Plecko M, Lagerpusch N, Andermatt D, et al. The dynamisation of locking plate osteosynthesis by means of dynamic locking screws (DLS)—an experimental study in sheep. Injury . 2013;44(10):1346–1357. 172. Plecko M, Lagerpusch N, Pegel B, et al. The influence of different osteosynthe- sis configurations with locking compression plates (LCP) on stability and fracture healing after an oblique 45 degrees angle osteotomy. Injury . 2012;43(7):1041– 1051.

102. Gollwitzer H, Karampour K, Hauschild M, et al. Biomechanical investigation of the primary stability of intramedullary compression nails in the proximal tibia: experi- mental study using interlocking screws in cryopreserved human tibias. J Orthop Sci . 2004;9(1):22–28. 103. Goodship AE, Cunningham JL, Kenwright J. Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin Orthop Relat Res . 1998(suppl 355):S105–S115. 104. Griffon DJ. Fracture Healing. New York: Thieme Medical Publishers; 2005. 105. Hackl M, Wegmann K, Taibah S, et al. Peri-implant failure in dual plating of the dis- tal humerus—a biomechanical analysis with regard to screw and plate positioning. Injury . 2015;46(11):2142–2145. 106. Hak DJ, Fitzpatrick D, Bishop JA, et al. Delayed union and nonunions: epidemiol- ogy, clinical issues, and financial aspects. Injury . 2014;45(suppl 2):S3–S7. 107. Harris B, Owen JR, Wayne JS, et al. Does femoral component loosening predispose to femoral fracture?: an in vitro comparison of cemented hips. Clin Orthop Relat Res . 2009;468(2):497–503. 108. Harris T, Ruth JT, Szivek J, et al. The Effect of implant overlap on the mechanical properties of the femur. J Trauma . 2003;54(5):930–935. 109. Heiner AD. Structural properties of fourth-generation composite femurs and tibias. J Biomech . 2008;41(15):3282–3284. 110. Heinlein B, Kutzner I, Graichen F, et al. ESB clinical biomechanics award 2008: complete data of total knee replacement loading for level walking and stair climb- ing measured in vivo with a follow-up of 6–10 months. Clin Biomech (Bristol, Avon) . 2009;24(4):315–326. 111. Henschel J, Tsai S, Fitzpatrick DC, et al. Comparison of 4 methods for dynam- ization of locking plates: differences in the amount and type of fracture motion. J Orthop Trauma . 2017;31:531–537. 112. Hidaka S, Gustilo RB. Refracture of bones of the forearm after plate removal. J Bone Joint Surg Am . 1984;66(8):1241–1243. 113. Hipp JA, Edgerton BC, An KN, et al. Structural consequences of transcortical holes in long bones loaded in torsion. J Biomech . 1990;23(12):1261–1268. 114. Höntzsch D, Weller S, Dürselen L, et al. Die begleitende Fibulaosteosynthese bei der kompletten Unterschenkelfraktur . Vol 9; 1993. 115. Horiuchi T, Igarashi M, Karube S, et al. Spontaneous fractures of the hip in the elderly. Orthopedics . 1988;11(9):1277–1280. 116. Horn J, Linke B, Hontzsch D, et al. Angle stable interlocking screws improve con- struct stability of intramedullary nailing of distal tibia fractures: a biomechanical study. Injury . 2009;40(7):767–771. 117. Hubbard MJ. The fixation of experimental femoral shaft torque fractures. Acta Orthop Scand . 1973;44(1):55–61. 118. Iannolo M, Werner FW, Sutton LG, et al. Forces across the middle of the intact clavicle during shoulder motion. J Shoulder Elbow Surg . 2010;19(7):1013–1017. 119. Iesaka K, Kummer FJ, Di Cesare PE. Stress risers between two ipsilateral intra- medullary stems: a finite-element and biomechanical analysis. J Arthroplasty . 2005;20(3):386–391. 120. James J, Ogden A, Mukherjee D, et al. Residual hole orientation after plate removal: effect on the clavicle. Orthopedics . 2015;38(11):e1034–e1039. 121. Johner R, Wruhs O. Classification of tibial shaft fractures and correlation with results after rigid internal fixation. Clin Orthop Relat Res . 1983;(178):7–25. 122. Kandemir U, Augat P, Konowalczyk S, et al. Implant material, type of fixation at the shaft, and position of plate modify biomechanics of distal femur plate osteosynthe- sis. J Orthop Trauma . 2017;31(8):e241–e246. 123. Kaspar K, Schell H, Seebeck P, et al. Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J Bone Joint Surg Am . 2005;87(9):2028–2037. 124. Keaveny TM, Kopperdahl DL, Melton LJ 3rd, et al. Age-dependence of femoral strength in white women and men. J Bone Miner Res . 2010;25(5):994–1001. 125. Kenwright J, Goodship A, Evans M. The influence of intermittent micromovement upon the healing of experimental fractures. Orthopedics . 1984;7(3):481–484. 126. Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res . 1989;(241):36–47. 127. Keyak JH, Skinner HB, Fleming JA. Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res . 2001;19(4):539–544. 128. Kienast B, Kowald B, Seide K, et al. An electronically instrumented internal fixator for the assessment of bone healing. Bone Joint Res . 2016;5(5):191–197. 129. Kincaid BL, An KN. Elbow joint biomechanics for preclinical evaluation of total elbow prostheses. J Biomech . 2013;46(14):2331–2341. 130. Kinzl L, Perren St, Burri C. Changes in the mechanical quality x of cortical bone under pressure plates situated (stress protection). Langenbecks Arch Chir . 1974;suppl:115–116. 131. Klein P, Schell H, Streitparth F, et al. The initial phase of fracture healing is specifi- cally sensitive to mechanical conditions. J Orthop Res . 2003;21(4):662–669. 132. Konstantinidis L, Helwig P, Hirschmüller A, et al. When is the stability of a fracture fixation limited by osteoporotic bone? Injury . 2016;47(suppl 2):S27–S32. 133. Konstantinidis L, Papaioannou C, Blanke P, et al. Failure after osteosynthe- sis of trochanteric fractures. Where is the limit of osteoporosis? Osteoporos Int . 2013;24(10):2701–2706. 134. Kostopoulos V, Vellios L, Fortis AP, et al. Comparative study of callus performance achieved by rigid and sliding plate osteosynthesis based upon dynamic mechanical analysis. J Med Eng Technol . 1994;18(2):61–66. 135. Krappinger D, Bizzotto N, Riedmann S, et al. Predicting failure after surgical fixa- tion of proximal humerus fractures. Injury . 2011;42(11):1283–1288. 136. Kress TA, Porta DJ, Snider JN, et al. Fracture patterns of human cadaver long bones. In: Proceedings of the International Research Council on the Biomechanics of Injury Conference ; September 13–15, 1995 ; Brunnen, Switzerland. 137. Krettek C, Haas N, Tscherne H. Stabilization of open tibial fracture by an external fixation-advantages through supplemental screw osteosynthesis. Chirurg . 1990; 61(11):820–823.

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this content is prohibited.

LWBK1698-C01_p001-042.indd 41

05/12/18 8:39 PM

Made with FlippingBook - Online catalogs