The COVID-19 Textbook


SECTION 3 • Immunology

108. Zhou D, Dejnirattisai W, Supasa P, et al . Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell . 2021;184:2348-2361.e6. 109. Dejnirattisai W, Zhou D, Supasa P, et al . Antibody evasion by the P.1 strain of SARS-CoV-2. Cell . 2021;184:2939-2954.e9. 110. Hachmann NP, Miller J, Collier AY, et al . Neutralization escape by SARS-CoV-2 omicron subvariants BA.2.12.1, BA.4, and BA.5. N Engl J Med . 2022;387:86-88. 111. Chen X, Pan Z, Yue S, et al . Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduct Target Ther . 2020;5:180. 112. Garcia-Beltran WF, Lam EC, Astudillo MG, et al . COVID-19-neutralizing antibodies predict disease severity and survival. Cell . 2021;184:476-488.e11. 113. Sandoval C, Guerrero D, Muñoz J, Godoy K, Souza-Mello V, Farías J . Effectiveness of mRNA, protein subunit vaccine and viral vectors vaccines against SARS-CoV-2 in people over 18 years old: a systematic review. Expert Rev Vaccines . 2023;22:35-53. 114. Baden LR, El Sahly HM, Essink B, et al . Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med . 2021;384:403-416. 115. Polack FP, Thomas SJ, Kitchin N, et al . Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med . 2020;383:2603-2615. 116. Sadoff J, Gray G, Vandebosch A, et al . Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med . 2021;384:2187-2201. 117. Mulligan MJ, Lyke KE, Kitchin N, et al . Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature . 2020;586:589-593. 118. Townsend JP, Hassler HB, Sah P, Galvani AP, Dornburg A. The durability of natural infection and vaccine-induced immunity against future infec tion by SARS-CoV-2. Proc Natl Acad Sci U S A . 2022;119:e2204336119. 119. Zang J, Gu C, Zhou B, et al . Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement. Cell Discov . 2020;6:61. 120. Fong Y, McDermott AB, Benkeser D, et al . Immune correlates analysis of a single Ad26.COV2.S dose in the ENSEMBLE COVID-19 vaccine efficacy clinical trial. medRxiv . 2022;2022.04.06.22272763. doi:10.1101/2022.04.06.22272763 121. Gilbert PB, Montefiori DC, McDermott AB, et al . Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science . 2022;375:43-50. 122. Tseng HF, Ackerson BK, Luo Y, et al . Effectiveness of mRNA-1273 against SARS-CoV-2 omicron and delta variants. Nat Med . 2022;28:1063-1071. 123. Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect . 2022;28:202-221. 124. Graña C, Ghosn L, Evrenoglou T, et al . Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev . 2022;12:CD015477. 125. Feng C, Shi J, Fan Q, et al . Protective humoral and cellular immune responses to SARS-CoV-2 persist up to 1 year after recovery. Nat Commun . 2021;12:4984. 126. Ewer KJ, Barrett JR, Belij-Rammerstorfer S, et al . T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat Med . 2021;27:270-278. 127. Grifoni A, Weiskopf D, Ramirez SI, et al . Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell . 2020;181:1489-1501.e15. 128. Vardhana S, Baldo L, Morice WG, Wherry EJ. Understanding T cell responses to COVID-19 is essential for informing public health strategies. Sci Immunol . 2022;7:eabo1303. 129. Geers D, Shamier MC, Bogers S, et al . SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convales cent donors and vaccinees. Sci Immunol . 2021;6:eabj1750. 130. Keeton R, Tincho MB, Ngomti A, et al . T cell responses to SARS-CoV-2 spike cross-recognize omicron. Nature . 2022;603:488-492. 131. Quinti I, Lougaris V, Milito C, et al . A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol . 2020;146:211-213.e4. 132. Meyts I, Bucciol G, Quinti I, et al . Coronavirus disease 2019 in patients with inborn errors of immunity: an international study. J Allergy Clin Immunol . 2021;147:520-531. 133. McMahan K, Yu J, Mercado NB, et al . Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature . 2021;590:630-634. 134. Alter G, Yu J, Liu J, et al . Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature . 2021;596:268-272. 135. Kaplonek P, Fischinger S, Cizmeci D, et al . mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern. Immunity . 2022;55:355-365.e4. 136. Winkler ES, Gilchuk P, Yu J, et al . Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell . 2021;184:1804-1820.e16. 137. Bar-On YM, Goldberg Y, Mandel M, et al . Protection against Covid-19 by BNT162b2 booster across age groups. N Engl J Med . 2021;385:2421-2430. 138. Barda N, Dagan N, Cohen C, et al . Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet . 2021;398:2093-2100. 139. Tang L, Zhang Y, Wang F, et al . Relative vaccine effectiveness against delta and omicron COVID-19 after homologous inactivated vaccine boosting: a retrospective cohort study. BMJ Open . 2022;12:e063919. 140. Muecksch F, Wang Z, Cho A, et al . Increased potency and breadth of SARS-CoV-2 neutralizing antibodies after a third mRNA vaccine dose. bioRxiv . 2022;2022.02.14.480394. doi:10.1101/2022.02.14.480394 141. Tan CS, Collier AY, Yu J, et al . Durability of heterologous and homologous COVID-19 vaccine boosts. JAMA Netw Open . 2022;5:e2226335. 142. Altmann DM, Boyton RJ. COVID-19 vaccination: the road ahead. Science . 2022;375:1127-1132. 143. Dolgin E. Pan-coronavirus vaccine pipeline takes form. Nat Rev Drug Discov . 2022;21:324-326. 144. Patel RS, Agrawal B. Heterologous immunity induced by 1st generation COVID-19 vaccines and its role in developing a pan-coronavirus vaccine. Front Immunol . 2022;13:952229. 145. Cohen AA, Gnanapragasam PNP, Lee YE, et al . Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science . 2021;371:735-741. 146. Cohen AA, van Doremalen N, Greaney AJ, et al . Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science . 2022;377:eabq0839. 147. Zhou P, Song G, He WT, et al . Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. bioRxiv . 2022;2022.03.04.479488. doi:10.1101/2022.03.04.479488 148. Hajnik RL, Plante JA, Liang Y, et al . Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 omicron and delta variants in preclinical models. Sci Transl Med . 2022;14:eabq1945. 149. Poon MML, Rybkina K, Kato Y, et al . SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci Immunol . 2021;6:eabl9105. 150. Park JH, Lee HK. Delivery routes for COVID-19 vaccines. Vaccines (Basel) . 2021;9:524. 151. Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect . 1990;105:435-446. 152. Chan RWY, Chan KCC, Lui GCY, et al . Mucosal antibody response to SARS-CoV-2 in paediatric and adult patients: a longitudinal study. Patho gens . 2022;11:397. 153. Nickel O, Rockstroh A, Wolf J, et al . Evaluation of the systemic and mucosal immune response induced by COVID-19 and the BNT162b2 mRNA vaccine for SARS-CoV-2. PLoS One . 2022;17:e0263861. 154. Mades A, Chellamathu P, Kojima N, et al . Detection of persistent SARS-CoV-2 IgG antibodies in oral mucosal fluid and upper respiratory tract specimens following COVID-19 mRNA vaccination. Sci Rep . 2021;11:24448. 155. Sheikh-Mohamed S, Isho B, Chao GYC, et al . Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vacci nation and are associated with protection against subsequent infection. Mucosal Immunol . 2022;15:799-808.

Copyright © 2023 Wolters Kluwer, Inc. Unauthorized reproduction of the content is prohibited.

Made with FlippingBook - professional solution for displaying marketing and sales documents online