Braverman.Tiroides_11ed

La tiroides normal

CAPÍTULO 4 n Síntesis de hormona tiroidea 85

306. Dunn AD, Crutchfield HE, Dunn JT. Proteolytic processing of thyroglobulin by extracts of thyroid lysosomes. Endocrinology 1991;128(6):3073–3080. 307. Dunn AD, Crutchfield HE, Dunn JT. Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L. J Biol Chem 1991;266(30):20198–20204. 308. Dunn AD, Myers HE, Dunn JT. The combined action of two thy- roidal proteases releases T4 from the dominant hormone-forming site of thyroglobulin. Endocrinology 1996;137(8):3279–3285. 309. Tepel C, Bromme D, Herzog V, et al. Cathepsin K in thyroid epi- thelial cells: sequence, localization and possible function in extra- cellular proteolysis of thyroglobulin. J Cell Sci 2000;113(Pt 24): 4487–4498. 310. Friedrichs B,Tepel C, Reinheckel T, et al.Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest 2003;111(11):1733–1745. 311. Miquelis R, Courageot J, Jacq A, et al. Intracellular routing of GLc- NAc-bearing molecules in thyrocytes: selective recycling through the Golgi apparatus. J Cell Biol 1993;123(6 Pt 2):1695–1706. 312. Ulianich L, Suzuki K, Mori A, et al. Follicular thyroglobulin (TG) suppression of thyroid-restricted genes involves the apical mem- brane asialoglycoprotein receptor and TG phosphorylation. J Biol Chem 1999;274(35):25099–25107. 313. Herzog V. Transcytosis in thyroid follicle cells. J Cell Biol 1983; 97(3):607–617. 314. Druetta L, Bornet H, Sassolas G, et al. Identification of thyroid hormone residues on serum thyroglobulin: a clue to the source of circulating thyroglobulin in thyroid diseases. Eur J Endocrinol 1999;140(5):457–467. 315. Lisi S, Segnani C, Mattii L, et al. Thyroid dysfunction in megalin deficient mice. Mol Cell Endocrinol 2005;236(1–2):43–47. 316. Friesema EC, Ganguly S, Abdalla A, et al. Identification of mono- carboxylate transporter 8 as a specific thyroid hormone trans- porter. J Biol Chem 2003;278(41):40128–40135. 317. Stromme P, Groeneweg S, Lima de Souza EC, et al. Mutated thyroid hormone transporter OATP1C1 associates with severe brain hypometabolism and juvenile neurodegeneration. Thyroid 2018;28(11):1406–1415. 318. Groeneweg S, van Geest FS, Peeters RP, et al. Thyroid hormone transporters. Endocr Rev 2019:bnz008. 319. Di Cosmo C, Liao XH, Dumitrescu AM, et al. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secre- tion. J Clin Invest 2010;120(9):3377–3388. 320. Lafreniere RG, Carrel L, Willard HF. A novel transmembrane transporter encoded by the XPCT gene in Xq13.2. Hum Mol Genet 1994;3(7):1133–1139. 321. Friesema EC, Jansen J, Jachtenberg JW, et al. Effective cellular uptake and efflux of thyroid hormone by human monocarboxyl- ate transporter 10. Mol Endocrinol 2008;22(6):1357–1369. 322. Friesema EC,GruetersA, BiebermannH, et al.Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 2004;364(9443):1435–1437. 323. Dumitrescu AM, Liao XH, Best TB, et al. A novel syndrome com- bining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 2004;74(1):168–175. 324. Friesema EC, Visser WE, Visser TJ. Genetics and phenomics of thyroid hormone transport by MCT8. Mol Cell Endocrinol 2010;322(1–2):107–113. 325. Roche J, Michel R, Michel O, et al. Sur la déshalogénation enzy- matique des iodotyrosines par le corps thyroïde et sur son role physiologique. Biochim Biophys Acta 1952;9(2):161–169.

326. Stanbury JB, Morris ML. Deiodination of diiodotyrosine by cell- free systems. J Biol Chem 1958;233(1):106–108. 327. Stanbury JB,Morris ML.The metabolism of 3:3 ′ -diiodothyronine in man. J Clin Endocrinol Metab 1957;17(11):1324–1331. 328. Stanbury JB, Litvak J. The metabolism of iodotyrosines. IV. Metabolism of L-diiodotyrosine in patients with hypothyroid- ism. J Clin Endocrinol Metab 1957;17(5):654–657. 329. Goswami A, Rosenberg IN. Studies on a soluble thyroid iodoty- rosine deiodinase: activation by NADPH and electron carriers. Endocrinology 1977;101(2):331–341. 330. Rosenberg IN, Goswami A. Purification and characterization of a flavoprotein from bovine thyroid with iodotyrosine deiodinase activity. J Biol Chem 1979;254(24):12318–12325. 331. Rosenberg IN. Purification of iodotyrosine deiodinase from bovine thyroid. Metabolism 1970;19(10):785–798. 332. Hubble D. Familial cretinism. Lancet 1953;1(6771):1112–1117. 333. McGirr EM, Hutchison JH. Radioactive-iodine studies in non- endemic goitrous cretinism. Lancet 1953;1(6771):1117–1120. 334. Stanbury JB, Kassenaar AA, Meijer JW, et al. The occurrence of mono- and di-iodotyrosine in the blood of a patient with congen- ital goiter. J Clin Endocrinol Metab 1955;15(10):1216–1227. 335. Moreno JC, Visser TJ. Genetics and phenomics of hypothyroid- ism and goiter due to iodotyrosine deiodinase (DEHAL1) gene mutations. Mol Cell Endocrinol 2010;322(1–2):91–98. 336. Moreno JC. Identification of novel genes involved in congenital hypothyroidism using serial analysis of gene expression. Horm Res 2003;60(Suppl 3):96–102. 337. Gnidehou S, Caillou B, Talbot M, et al. Iodotyrosine dehaloge- nase 1 (DEHAL1) is a transmembrane protein involved in the recycling of iodide close to the thyroglobulin iodination site. Faseb J 2004;18(13):1574–1576. 338. Gnidehou S, Lacroix L, Sezan A, et al. Cloning and charac- terization of a novel isoform of iodotyrosine dehalogenase 1 (DEHAL1) DEHAL1C from human thyroid: comparisons with DEHAL1 and DEHAL1B. Thyroid 2006;16(8):715–724. 339. Moreno JC, Klootwijk W, van Toor H, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med 2008;358(17):1811–1818. 340. Thomas SR, McTamney PM, Adler JM, et al. Crystal struc- ture of iodotyrosine deiodinase, a novel flavoprotein respon- sible for iodide salvage in thyroid glands. J Biol Chem 2009; 284(29):19659–19667. 341. Friedman JE, Watson JA Jr, Lam DW, et al. Iodotyrosine deio- dinase is the first mammalian member of the NADH oxi- dase/flavin reductase superfamily. J Biol Chem 2006;281(5): 2812–2819. 342. Kopp PA. Reduce, recycle, reuse–iodotyrosine deiodinase in thy- roid iodide metabolism. N Engl J Med 2008;358(17):1856–1859. 343. Medeiros-Neto G, Stanbury JB. The iodotyrosine deiodinase defect. In: Medeiros-Neto G, Stanbury JB, eds. Inherited Disor- ders of the Thyroid System . Boca Raton, FL: CRC Press; 1994: 139–159. 344. Afink G, Kulik W, Overmars H, et al. Molecular characterization of iodotyrosine dehalogenase deficiency in patients with hypo- thyroidism. J Clin Endocrinol Metab 2008;93(12):4894–4901. 345. Burniat A, Pirson I, Vilain C, et al. Iodotyrosine deiodinase defect identified via genome-wide approach. J Clin Endocrinol Metab 2012;97(7):E1276–E1283. 346. Coscia F, Taler-Vercˇ icˇ A, Chang VT, et al. The structure of human thyroglobulin [Epub ahead of print]. Nature 2020 . doi: 10.1038/ s41586-020-1995-4.

SAMPLE

Made with FlippingBook - Online catalogs