Braverman.Tiroides_11ed

84 SECCIÓN I n La tiroides normal

264. Ohye H, Fukata S, Hishinuma A, et al. A novel homozygous mis- sense mutation of the dual oxidase 2 (DUOX2) gene in an adult patient with large goiter. Thyroid 2008;18(5):561–566. 265. Dawson JH. Probing structure-function relations in heme- containing oxygenases and peroxidases. Science 1988;240(4851): 433–439. 266. Taurog A, Dorris ML, Doerge DR. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase. Arch Biochem Biophys 1996;330(1):24–32. 267. Pommier J, Deme D, Nunez J. Effect of iodide concentration on thyroxine synthesis catalysed by thyroid peroxidase. Eur J Bio- chem 1973;37(3):406–414. 268. Nunez J, Pommier J. Formation of thyroid hormones. Vitam Horm 1982;39:175–229. 269. Malthiery Y, Marriq C, Berge-Lefranc JL, et al. Thyroglobu- lin structure and function: recent advances. Biochimie 1989; 71(2):195–209. 270. Lamas L, Anderson PC, Fox JW, et al. Consensus sequences for early iodination and hormonogenesis in human thyroglobulin. J Biol Chem 1989;264(23):13541–13545. 271. Xiao S, Dorris ML, Rawitch AB, et al. Selectivity in tyrosyl iodination sites in human thyroglobulin. Arch Biochem Biophys 1996;334(2):284–294. 272. Gavaret JM, Nunez J, Cahnmann HJ. Formation of dehydroala- nine residues during thyroid hormone synthesis in thyroglobulin. J Biol Chem 1980;255(11):5281–5285. 273. Kim PS, Dunn JT, Kaiser DL. Similar hormone-rich peptides from thyroglobulins of five vertebrate classes. Endocrinology 1984;114(2):369–374. 274. Dunn AD, Corsi CM, Myers HE, et al. Tyrosine 130 is an import- ant outer ring donor for thyroxine formation in thyroglobulin. J Biol Chem 1998;273(39):25223–25229. 275. Citterio CE, Morishita Y, Dakka N, et al. Relationship between the dimerization of thyroglobulin and its ability to form triiodo- thyronine. J Biol Chem 2018;293(13):4860–4869. 276. Ohtaki S, Nakagawa H, Nakamura M, et al. Thyroid peroxi- dase: experimental and clinical integration. Endocr J 1996;43(1): 1–14. 277. Morrison M, Schonbaum GR. Peroxidase-catalyzed halogena- tion. Annu Rev Biochem 1976;45:861–888. 278. Magnusson RP, Taurog A, Dorris ML. Mechanisms of thyroid peroxidase- and lactoperoxidase-catalyzed reactions involving iodide. J Biol Chem 1984;259(22):13783–13790. 279. Magnusson RP, Taurog A, Dorris ML. Mechanism of iodide- dependent catalatic activity of thyroid peroxidase and lactoper- oxidase. J Biol Chem 1984;259(1):197–205. 280. Sun W, Dunford HB. Kinetics and mechanism of the peroxidase- catalyzed iodination of tyrosine. Biochemistry 1993;32(5): 1324–1331. 281. Dème D, Pommier J, Nunez J. Specificity of thyroid hormone synthesis. The role of thyroid peroxidase. Biochim Biophys Acta 1978;540(1):73–82. 282. Taurog A, Riesco G, Larsen PR. Formation of 3,3 ′ -diiodothy- ronine and 3 ′ ,5 ′ ,3-triiodothyronine (reverse T3) in thyroid glands of rats and in enzymatically iodinated thyroglobulin. Endocrinol- ogy 1976;99(1):281–290. 283. Taurog A, Nakashima T. Dissociation between degree of iodina- tion and iodoamino acid distribution in thyroglobulin. Endocri- nology 1978;103(2):633–640. 284. Virion A, Courtin F, Deme D, et al. Spectral characteristics and catalytic properties of thyroid peroxidase-H 2 O 2 compounds in the iodination and coupling reactions. Arch Biochem Biophys 1985;242(1):41–47. 285. Taurog A, Dorris M, Doerge DR. Evidence for a radical mecha- nism in peroxidase-catalyzed coupling. I. Steady-state experiments with various peroxidases. Arch Biochem Biophys 1994;315(1): 82–99.

286. Doerge DR, Taurog A, Dorris ML. Evidence for a radical mecha- nism in peroxidase-catalyzed coupling. II. Single turnover exper- iments with horseradish peroxidase. Arch Biochem Biophys 1994;315(1):90–99. 287. Cooper DS. Antithyroid drugs in the management of patients with Graves’ disease: an evidence-based approach to therapeutic controversies. J Clin Endocrinol Metab 2003;88(8):3474–3481. 288. Cooper DS. Antithyroid drugs. N Engl J Med 2005;352(9): 905–917. 289. Burch HB, Cooper DS. ANNIVERSARY REVIEW: Antithyroid drug therapy: 70 years later. Eur J Endocrinol 2018;179(5): R261–R274. 290. Marchant B, Lees JF, Alexander WD. Antithyroid drugs. Pharma- col Ther 1978;3(3):305–348. 291. Nakashima T, Taurog A, Riesco G. Mechanism of action of thioureylene antithyroid drugs: factors affecting intrathyroidal metabolism of propylthiouracil and methimazole in rats. Endo- crinology 1978;103(6):2187–2197. 292. Lang JC, Lees JF, Alexander WD, et al. Effect of variations in acute and chronic iodine intake on the accumulation and metabolism of [ 35 S]methimazole by the rat thyroid gland. Dif- ferences from [35S]propylthiouracil. Biochem Pharmacol 1983; 32(2):241–247. 293. Taurog A. The mechanism of action of the thioureylene antithy- roid drugs. Endocrinology 1976;98(4):1031–1046. 294. Engler H, Taurog A, Luthy C, et al. Reversible and irrevers- ible inhibition of thyroid peroxidase-catalyzed iodination by thioureylene drugs. Endocrinology 1983;112(1):86–95. 295. Taurog A, Dorris ML, Guziec FS Jr. Metabolism of 35 S- and 14 C-labeled 1-methyl-2-mercaptoimidazole in vitro and in vivo. Endocrinology 1989;124(1):30–39. 296. Taurog A, Dorris ML. A reexamination of the proposed inactiva- tion of thyroid peroxidase in the rat thyroid by propylthiouracil. Endocrinology 1989;124(6):3038–3042. 297. Taurog A, Dorris ML, Guziec FS Jr, et al. Metabolism of 35 S- and 14 C-labeled propylthiouracil in a model in vitro system containing thyroid peroxidase. Endocrinology 1989;124(6): 3030–3037. 298. Doerge DR. Mechanism-based inhibition of lactoperoxidase by thiocarbamide goitrogens. Identification of turnover and inacti- vation pathways. Biochemistry 1988;27(10):3697–3700. 299. Engler H, Taurog A, Dorris ML. Preferential inhibition of thyroxine and 3,5,3 ′ -triiodothyronine formation by prop- ylthiouracil and methylmercaptoimidazole in thyroid peroxidase- catalyzed iodination of thyroglobulin. Endocrinology 1982; 110(1):190–197. 300. McDonald DO, Pearce SH. Thyroid peroxidase forms thi- onamide-sensitive homodimers: relevance for immunomod- ulation of thyroid autoimmunity. J Mol Med 2009;87(10): 971–980. 301. Bernier-Valentin F, Kostrouch Z, Rabilloud R, et al. Coated ves- icles from thyroid cells carry iodinated thyroglobulin molecules. First indication for an internalization of the thyroid prohormone via a mechanism of receptor-mediated endocytosis. J Biol Chem 1990;265(28):17373–17380. 302. Kostrouch Z, Bernier-Valentin F, Munari-Silem Y, et al. Thyro- globulin molecules internalized by thyrocytes are sorted in early endosomes and partially recycled back to the follicular lumen. Endocrinology 1993;132(6):2645–2653. 303. Marino M, McCluskey RT. Role of thyroglobulin endocytic pathways in the control of thyroid hormone release. Am J Physiol Cell Physiol 2000;279(5):C1295–C1306. 304. Marino M, Pinchera A, McCluskey RT, et al. Megalin in thyroid physiology and pathology. Thyroid 2001;11(1):47–56. 305. Tokuyama T, Yoshinari M, Rawitch AB, et al. Digestion of thyro- globulin with purified thyroid lysosomes: preferential release of iodoamino acids. Endocrinology 1987;121(2):714–721.

SAMPLE

Made with FlippingBook - Online catalogs