Braverman.Tiroides_11ed

La tiroides normal

CAPÍTULO 4 n Síntesis de hormona tiroidea 83

227. Dupuy C, Kaniewski J, Deme D, et al. NADPH-dependent H 2 O 2 generation catalyzed by thyroid plasma membranes. Studies with electron scavengers. Eur J Biochem 1989;185(3):597–603. 228. Leseney AM, Deme D, Legue O, et al. Biochemical characteriza- tion of a Ca2 + /NAD(P)H-dependent H 2 O 2 generator in human thyroid tissue. Biochimie 1999;81(4):373–380. 229. Dème D, Doussiere J, De Sandro V, et al. The Ca2 + /NADPH- dependent H 2 O 2 generator in thyroid plasma membrane: inhibition by diphenyleneiodonium. Biochem J 1994;301(Pt 1):75–81. 230. Gorin Y, Ohayon R, Carvalho DP, et al. Solubilization and char- acterization of a thyroid Ca 2 + -dependent and NADPH-dependent K 3 Fe(CN) 6 reductase. Relationship with the NADPH-depen- dent H 2 O 2 -generating system. Eur J Biochem 1996;240(3):807–814. 231. Dème D, Virion A, Hammou NA, et al. NADPH-dependent gen- eration of H 2 O 2 in a thyroid particulate fraction requires Ca 2 + . FEBS Lett 1985;186(1):107–110. 232. Raspé E, Laurent E, Corvilain B, et al. Control of the intracel- lular Ca 2 + -concentration and the inositol phosphate accumu- lation in dog thyrocyte primary culture: evidence for different kinetics of Ca 2 + -phosphatidylinositol cascade activation and for involvement in the regulation of H 2 O 2 production. J Cell Physiol 1991;146(2):242–250. 233. Raspé E, Dumont JE. Tonic modulation of dog thyrocyte H 2 O 2 generation and I − uptake by thyrotropin through the cyclic adenosine 3 ′ ,5 ′ -monophosphate cascade. Endocrinology 1995;136(3):965–973. 234. Dupuy C, Ohayon R, Valent A, et al. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Clon- ing of the porcine and human cDNAs. J Biol Chem 1999; 274(52):37265–37269. 235. De Deken X, Wang D, Many MC, et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 2000;275(30):23227–23233. 236. Edens WA, Sharling L, Cheng G, et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/ peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 2001;154(4):879–891. 237. Moreno JC, Pauws E, van Kampen AH, et al. Cloning of tissue- specific genes using serial analysis of gene expression and a novel computational substraction approach. Genomics 2001;75(1–3): 70–76. 238. Grasberger H, Refetoff S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 2006;281(27):18269–18272. 239. Fischer H, Gonzales LK, Kolla V, et al. Developmental regula- tion of DUOX1 expression and function in human fetal lung epi- thelial cells. Am J Physiol Lung Cell Mol Physiol 2007;292(6): L1506–L1514. 240. Luxen S, Belinsky SA, Knaus UG. Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res 2008;68(4):1037–1045. 241. Morand S, Ueyama T, Tsujibe S, et al. Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. Faseb J 2009;23(4):1205–1218. 242. Corvilain B, Laurent E, Lecomte M, et al. Role of the cyclic ade- nosine 3 ′ ,5 ′ -monophosphate and the phosphatidylinositol-Ca 2 + cascades in mediating the effects of thyrotropin and iodide on hormone synthesis and secretion in human thyroid slices. J Clin Endocrinol Metab 1994;79(1):152–159. 243. Grasberger H. Defects of thyroidal hydrogen peroxide genera- tion in congenital hypothyroidism. Mol Cell Endocrinol 2010; 322(1–2):99–106. 244. De Deken X, Wang D, Dumont JE, et al. Characterization of ThOX proteins as components of the thyroid H 2 O 2 -generating system. Exp Cell Res 2002;273(2):187–196. 245. Morand S, Chaaraoui M, Kaniewski J, et al. Effect of iodide on nicotinamide adenine dinucleotide phosphate oxidase activity

and Duox2 protein expression in isolated porcine thyroid folli- cles. Endocrinology 2003;144(4):1241–1248. 246. Pachucki J,Wang D, Christophe D, et al. Structural and functional characterization of the two human ThOX/Duox genes and their 5 ′ -flanking regions. Mol Cell Endocrinol 2004;214(1–2):53–62. 247. El Hassani RA, Benfares N, Caillou B, et al. Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointes- tinal Liver Physiol 2005;288(5):G933–G942. 248. Geiszt M, Lekstrom K, Witta J, et al. Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 2003; 278(22):20006–20012. 249. Caillou B, Dupuy C, Lacroix L, et al. Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissues. J Clin Endocrinol Metab 2001;86(7):3351–3358. 250. Schwarzer C, Machen TE, Illek B, et al. NADPH oxidase- dependent acid production in airway epithelial cells. J Biol Chem 2004;279(35):36454–36461. 251. Dupuy C, Pomerance M, Ohayon R, et al. Thyroid oxidase (THOX2) gene expression in the rat thyroid cell line FRTL-5. Biochem Biophys Res Commun 2000;277(2):287–292. 252. Corvilain B, Van Sande J, Dumont JE. Inhibition by iodide of iodide binding to proteins: the “Wolff-Chaikoff” effect is caused by inhibition of H 2 O 2 generation. Biochem Biophys Res Com- mun 1988;154(3):1287–1292. 253. Lacroix L, Nocera M, Mian C, et al. Expression of nicotinamide adenine dinucleotide phosphate oxidase flavoprotein DUOX genes and proteins in human papillary and follicular thyroid car- cinomas. Thyroid 2001;11(11):1017–1023. 254. Nakamura Y, Makino R, Tanaka T, et al. Mechanism of H 2 O 2 production in porcine thyroid cells: evidence for intermediary formation of superoxide anion by NADPH-dependent H 2 O 2 - generating machinery. Biochemistry 1991;30(20):4880–4886. 255. Zamproni I, Grasberger H, Cortinovis F, et al. Biallelic inactiva- tion of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab 2008;93(2):605–610. 256. Hulur I, Hermanns P, Nestoris C, et al. A single copy of the recently identified dual oxidase maturation factor (DUOXA) 1 gene produces only mild transient hypothyroidism in a patient with a novel biallelic DUOXA2 mutation and monoallelic DUOXA1 deletion. J Clin Endocrinol Metab 2011;96(5):E841– E845. 257. Bjorkman U, Ekholm R. Hydrogen peroxide generation and its regulation in FRTL-5 and porcine thyroid cells. Endocrinology 1992;130(1):393–399. 258. Carvalho DP, Dupuy C, Gorin Y, et al. The Ca 2 + - and reduced nic- otinamide adenine dinucleotide phosphate-dependent hydrogen peroxide generating system is induced by thyrotropin in porcine thyroid cells. Endocrinology 1996;137(3):1007–1012. 259. Ohayon R, Boeynaems JM, Braekman JC, et al. Inhibition of thy- roid NADPH-oxidase by 2-iodohexadecanal in a cell-free system. Mol Cell Endocrinol 1994;99(1):133–141. 260. Panneels V, Van den Bergen H, Jacoby C, et al. Inhibition of H 2 O 2 production by iodoaldehydes in cultured dog thyroid cells. Mol Cell Endocrinol 1994;102(1–2):167–176. 261. Corvilain B, Collyn L, van Sande J, et al. Stimulation by iodide of H 2 O 2 generation in thyroid slices from several species. Am J Physiol Endocrinol Metab 2000;278(4):E692–E699. 262. Moreno JC, Bikker H, Kempers MJ, et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypo- thyroidism. N Engl J Med 2002;347(2):95–102. 263. Peters C, Nicholas AK, Schoenmakers E, et al. DUOX2/DUOXA2 mutations frequently cause congenital hypothyroidism that evades detection on newborn screening in the United Kingdom. Thyroid 2019;29(6):790–801.

SAMPLE

Made with FlippingBook - Online catalogs