Braverman.Tiroides_11ed

La tiroides normal

CAPÍTULO 4 n Síntesis de hormona tiroidea 81

169. McLachlan SM, Rapoport B. The molecular biology of thyroid peroxidase: cloning, expression and role as autoantigen in auto- immune thyroid disease. Endocr Rev 1992;13(2):192–206. 170. Nagayama Y, Seto P, Rapoport B. Characterization, by molec- ular cloning, of smaller forms of thyroid peroxidase messenger ribonucleic acid in human thyroid cells as alternatively spliced transcripts. J Clin Endocrinol Metab 1990;71(2):384–390. 171. Ferrand M, Le Fourn V, Franc JL. Increasing diversity of human thyroperoxidase generated by alternative splicing. Characterized by molecular cloning of new transcripts with single- and mul- tispliced mRNAs. J Biol Chem 2003;278(6):3793–3800. 172. Niccoli P, Fayadat L, Panneels V, et al. Human thyroperoxidase in its alternatively spliced form (TPO2) is enzymatically inactive and exhibits changes in intracellular processing and trafficking. J Biol Chem 1997;272(47):29487–29492. 173. Cetani F, Costagliola S, Tonacchera M, et al. The thyroperoxidase doublet is not produced by alternative splicing. Mol Cell Endo- crinol 1995;115(2):125–132. 174. Taurog A, Dorris ML, Yokoyama N, et al. Purification and characterization of a large, tryptic fragment of human thyroid peroxidase with high catalytic activity. Arch Biochem Biophys 1990;278(2):333–341. 175. Yokoyama N, Taurog A. Porcine thyroid peroxidase: relationship between the native enzyme and an active, highly purified tryptic fragment. Mol Endocrinol 1988;2(9):838–844. 176. Foti D, Kaufman KD, Chazenbalk GD, et al. Generation of a biologically active, secreted form of human thyroid peroxi- dase by site-directed mutagenesis. Mol Endocrinol 1990;4(5): 786–791. 177. Rawitch AB, Pollock HG, Yang SX. Thyroglobulin glycosylation: location and nature of the N-linked oligosaccharide units in bovine thyroglobulin. Arch Biochem Biophys 1993;300(1):271–279. 178. Taurog A, Wall M. Proximal and distal histidines in thyroid peroxidase: relation to the alternatively spliced form, TPO-2. Thyroid 1998;8(2):185–191. 179. Kopp P. Thyroid hormone synthesis: thyroid iodine metabolism. In: Braverman L, Utiger R, eds. Werner and Ingbar’s the Thyroid: A Fundamental and Clinical Text . 9th ed. Philadelphia, PA: Lippincott Williams &Wilkins; 2005:52–76. 180. Taurog A. Molecular evolution of thyroid peroxidase. Biochimie 1999;81(5):557–562. 181. Zeng J, Fenna RE. X-ray crystal structure of canine myeloperox- idase at 3 Å resolution. J Mol Biol 1992;226(1):185–207. 182. Fiedler TJ, Davey CA, Fenna RE. X-ray crystal structure and char- acterization of halide-binding sites of human myeloperoxidase at 1.8 Å resolution. J Biol Chem 2000;275(16):11964–11971. 183. Blair-Johnson M, Fiedler T, Fenna R. Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 A resolution. Biochemistry 2001;40(46):13990–13997. 184. Le SN, Porebski BT, McCoey J, et al. Modelling of thyroid per- oxidase reveals insights into its enzyme function and autoantige- nicity. PLoS One 2015;10(12):e0142615. 185. Singh RP, Singh A, Sirohi HV, et al. Dual binding mode of anti- thyroid drug methimazole to mammalian heme peroxidases— structural determination of the lactoperoxidase-methimazole complex at 1.97 A resolution. FEBS Open Bio 2016;6(7):640– 650. 186. Nilsson M, Molne J, Karlsson FA, et al. Immunoelectron micro- scopic studies on the cell surface location of the thyroid microso- mal antigen. Mol Cell Endocrinol 1987;53(3):177–186. 187. Pinchera A, Mariotti S, Chiovato L, et al. Cellular localization of the microsomal antigen and the thyroid peroxidase antigen. Acta Endocrinol 1987;281:57–62. 188. Bjorkman U, Ekholm R, Ericson LE. Effects of thyrotropin on thyroglobulin exocytosis and iodination in the rat thyroid gland. Endocrinology 1978;102(2):460–470.

comparison with bovine thyroglobulin. Arch Biochem Biophys 1996;327(1):61–70. 150. Sakurai S, Fogelfeld L, Schneider AB. Anionic carbohydrate groups of human thyroglobulin containing both phosphate and sulfate. Endocrinology 1991;129(2):915–920. 151. Blode H, Heinrich T, Diringer H. A quantitative assay for tyro- sine sulfation and tyrosine phosphorylation in peptides. Biol Chem Hoppe Seyler 1990;371(2):145–151. 152. Venot N, Nlend MC, Cauvi D, et al. The hormonogenic tyro- sine 5 of porcine thyroglobulin is sulfated. Biochem Biophys Res Commun 2002;298(2):193–197. 153. Citterio CE, Veluswamy B, Morgan SJ, et al. De novo triiodothy- ronine formation from thyrocytes activated by thyroid-stimulating hormone. J Biol Chem 2017;292(37):15434–15444. 154. Ricketts MH, Simons MJ, Parma J, et al. A nonsense mutation causes hereditary goitre in the Afrikander cattle and unmasks alternative splicing of thyroglobulin transcripts. Proc Natl Acad Sci U S A 1987;84(10):3181–3184. 155. Ieiri T, Cochaux P, Targovnik HM, et al. A 3 ′ splice site mutation in the thyroglobulin gene responsible for congenital goiter with hypothyroidism. J Clin Invest 1991;88(6):1901–1905. 156. van de Graaf SA, Ris-Stalpers C, Pauws E, et al. Up to date with human thyroglobulin. J Endocrinol 2001;170(2):307–321. 157. Caron P, Moya CM, Malet D, et al. Compound heterozygous mutations in the thyroglobulin gene (1143delC and 6725G > A [R2223H]) resulting in fetal goitrous hypothyroidism. J Clin Endocrinol Metab 2003;88(8):3546–3553. 158. Targovnik HM, Vono J, Billerbeck AE, et al. A 138-nucleotide deletion in the thyroglobulin ribonucleic acid messenger in a congenital goiter with defective thyroglobulin synthesis. J Clin Endocrinol Metab 1995;80(11):3356–3360. 159. Medeiros-Neto G, Kim PS, Yoo SE, et al. Congenital hypothyroid goiter with deficient thyroglobulin. Identification of an endoplas- mic reticulum storage disease with induction of molecular chap- erones. J Clin Invest 1996;98(12):2838–2844. 160. Kim PS, Ding M, Menon S, et al. A missense mutation G2320R in the thyroglobulin gene causes non-goitrous congenital pri- mary hypothyroidism in the WIC-rdw rat. Mol Endocrinol 2000;14(12):1944–1953. 161. Godlewska M, Banga PJ. Thyroid peroxidase as a dual active site enzyme: focus on biosynthesis, hormonogenesis and thyroid disorders of autoimmunity and cancer. Biochimie 2019;160: 34–45. 162. Taurog A. Hormone synthesis: thyroid iodine metabolism. In: Braverman L, Utiger R, eds. Werner and Ingbar’s the Thyroid: a Fundamental and Clinical Text . 7th ed. Philadelphia, PA: Lippincott- Raven; 1996:47–81. 163. Taurog A. Hormone synthesis: thyroid iodine metabolism. In: Braverman L, Utiger R, eds. Werner and Ingbar’s the Thyroid: A Fundamental and Clinical Text . 8th ed. Philadelphia, PA: Lippincott Williams &Wilkins; 2000:61–85. 164. Kimura S, Kotani T, McBride OW, et al. Human thyroid peroxi- dase: complete cDNA and protein sequence, chromosome map- ping, and identification of two alternately spliced mRNAs. Proc Natl Acad Sci U S A 1987;84(16):5555–5559. 165. de Vijlder JJ, Dinsart C, Libert F, et al. Regional localization of the gene for thyroid peroxidase to human chromosome 2pter-p12. Cytogenet Cell Genet 1988;47(3):170–172. 166. Kimura S, Hong YS, Kotani T, et al. Structure of the human thy- roid peroxidase gene: comparison and relationship to the human myeloperoxidase gene. Biochemistry 1989;28(10):4481–4489. 167. Magnusson RP, Gestautas J, Taurog A, et al. Molecular cloning of the structural gene for porcine thyroid peroxidase. J Biol Chem 1987;262(29):13885–13888. 168. Libert F, Ruel J, Ludgate M, et al. Thyroperoxidase, an auto-an- tigen with a mosaic structure made of nuclear and mitochondrial gene modules. Embo J 1987;6(13):4193–4196.

SAMPLE

Made with FlippingBook - Online catalogs