Braverman.Tiroides_11ed

80 SECCIÓN I n La tiroides normal the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J Med Genet 2005;42(2):159–165. 112. Palos F, Garcia-Rendueles ME, Araujo-Vilar D, et al. Pendred syndrome in two Galician families: insights into clinical phe- notypes through cellular, genetic, and molecular studies. J Clin Endocrinol Metab 2008;93(1):267–277. 113. Everett LA, Belyantseva IA, Noben-Trauth K, et al. Targeted dis- ruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 2001; 10:153–161. 114. Kim HM, Wangemann P. Failure of fluid absorption in the endolymphatic sac initiates cochlear enlargement that leads to deafness in mice lacking pendrin expression. PLoS One 2010; 5(11):e14041. 115. Calebiro D, Porazzi P, Bonomi M, et al. Absence of primary hypothyroidism and goiter in Slc26a4( - / - ) mice fed on a low iodine diet. J Endocrinol Invest 2010;34(8):593–598. 116. Iwata T, Yoshida T, Teranishi M, et al. Influence of dietary iodine deficiency on the thyroid gland in Slc26a4-null mutant mice. Thyroid Res 2011;4(1):10. 117. Rotman-Pikielny P, Hirschberg K, Maruvada P, et al. Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome. Hum Mol Genet 2002;11(21):2625–2633. 118. Ferrera L, Caputo A, Ubby I, et al. Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem 2009;284(48):33360–33368. 119. Ferrera L, Caputo A, Galietta LJ. TMEM16A protein: a new iden- tity for Ca(2 + )-dependent Cl( - ) channels. Physiology (Bethesda) 2010;25(6):357–363. 120. Iosco C, Cosentino C, Sirna L, et al. Anoctamin 1 is apically expressed on thyroid follicular cells and contributes to ATP- and calcium-activated iodide efflux. Cell Physiol Biochem 2014; 34(3):966–980. 121. Twyffels L, Strickaert A, Virreira M, et al. Anoctamin-1/ TMEM16A is the major apical iodide channel of the thyrocyte. Am J Physiol Cell Physiol 2014;307(12):C1102–C1112. 122. Silveira JC, Kopp PA. Pendrin and anoctamin as mediators of apical iodide efflux in thyroid cells. Curr Opin Endocrinol Dia- betes Obes 2015;22(5):374–380. 123. Zou M, Alzahrani AS, Al-Odaib A, et al. Molecular analysis of congenital hypothyroidism in Saudi Arabia: SLC26A7 mutation is a novel defect in thyroid dyshormonogenesis. J Clin Endocri- nol Metab 2018;103(5):1889–1898. 124. Xu J, Song P, Nakamura S, et al. Deletion of the chloride trans- porter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem 2009;284(43):29470–29479. 125. Cangul H, Liao XH, Schoenmakers E, et al. Homozygous loss-of- function mutations in SLC26A7 cause goitrous congenital hypo- thyroidism. JCI Insight 2018;3(20):99631. 126. Ishii J, Suzuki A, Kimura T, et al. Congenital goitrous hypo- thyroidism is caused by dysfunction of the iodide transporter SLC26A7. Commun Biol 2019;2:270. 127. Di Jeso B, Arvan P. Thyroglobulin structure, function, and bio- synthesis. In: Braverman L, Utiger R, eds. Werner and Ingbar’s the Thyroid: A Fundamental and Clinical Text . 9th ed. Philadel- phia, PA: Lippincott Williams &Wilkins; 2005:77–95. 128. Targovnik H. Thyroglobulin structure, function, and biosynthe- sis. In: Braverman L, Cooper D, eds. Werner and Ingbar’s the Thyroid: A Fundamental and Clinical Text . Philadelphia, PA: Lippincott Williams &Wilkins; 2011:74–92. 129. Citterio CE, Targovnik HM, Arvan P. The role of thyroglob- ulin in thyroid hormonogenesis. Nat Rev Endocrinol 2019; 15(6):323–338. 130. Malthiery Y, Lissitzky S. Primary structure of human thyroglob- ulin deduced from the sequence of its 8448-base complementary DNA. Eur J Biochem 1987;165(3):491–498.

131. van de Graaf SA, Pauws E, de Vijlder JJ, et al. The revised 8307 base pair coding sequence of human thyroglobulin tran- siently expressed in eukaryotic cells. Eur J Endocrinol 1997; 136(5):508–515. 132. Targovnik HM, Esperante SA, Rivolta CM. Genetics and phe- nomics of hypothyroidism and goiter due to thyroglobulin muta- tions. Mol Cell Endocrinol 2010;322(1–2):44–55. 133. Tomer Y, Greenberg DA, Concepcion E, et al. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid dis- eases. J Clin Endocrinol Metab 2002;87(1):404–407. 134. Stefan M, Jacobson EM, Huber AK, et al. Novel variant of thy- roglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism. J Biol Chem 2011;286(36):31168–31179. 135. Kim PS, Arvan P. Hormonal regulation of thyroglobulin export from the endoplasmic reticulum of cultured thyrocytes. J Biol Chem 1993;268(7):4873–4879. 136. Arvan P, Kim PS, Kuliawat R, et al. Intracellular protein trans- port to the thyrocyte plasma membrane: potential implications for thyroid physiology. Thyroid 1997;7(1):89–105. 137. Dunn JT, Dunn AD. Thyroglobulin: chemistry, biosynthesis, and proteolysis. In: Braverman LE, Utiger RD, eds. Werner & Ingbar’s the Thyroid: A Fundamental and Clinical Text . 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2000: 91–104. 138. Molina F, Bouanani M, Pau B, et al. Characterization of the type-1 repeat from thyroglobulin, a cysteine-rich module found in proteins from different families. Eur J Biochem 1996;240(1): 125–133. 139. Yamashita M, Konagaya S. A novel cysteine protease inhibitor of the egg of chum salmon, containing a cysteine-rich thyroglobu- lin-like motif. J Biol Chem 1996;271(3):1282–1284. 140. Mercken L, Simons MJ, De Martynoff G, et al. Presence of hor- monogenic and repetitive domains in the first 930 amino acids of bovine thyroglobulin as deduced from the cDNA sequence. Eur J Biochem 1985;147(1):59–64. 141. Swillens S, Ludgate M, Mercken L, et al. Analysis of sequence and structure homologies between thyroglobulin and acetylcho- linesterase: possible functional and clinical significance. Biochem Biophys Res Commun 1986;137(1):142–148. 142. Parma J, Christophe D, Pohl V, et al. Structural organization of the 5 ′ region of the thyroglobulin gene. Evidence for intron loss and “exonization” during evolution. J Mol Biol 1987;196(4): 769–779. 143. Park YN, Arvan P. The acetylcholinesterase homology region is essential for normal conformational maturation and secretion of thyroglobulin. J Biol Chem 2004;279(17):17085–17089. 144. Lee J, Di Jeso B, Arvan P. The cholinesterase-like domain of thyroglobulin functions as an intramolecular chaperone. J Clin Invest 2008;118(8):2950–2958. 145. Lee J, Wang X, Di Jeso B, et al. The cholinesterase-like domain, essential in thyroglobulin trafficking for thyroid hormone syn- thesis, is required for protein dimerization. J Biol Chem 2009; 284(19):12752–12761. 146. Kim PS, Arvan P. Endocrinopathies in the family of endoplas- mic reticulum (ER) storage diseases: disorders of protein traf- ficking and the role of ER molecular chaperones. Endocr Rev 1998;19(2):173–202. 147. Di Jeso B, Morishita Y, Treglia AS, et al. Transient covalent interactions of newly synthesized thyroglobulin with oxidore- ductases of the endoplasmic reticulum. J Biol Chem 2014; 289(16):11488–11496. 148. Dunn J. Biosynthesis and secretion of thyroid hormones. In: De Groot L, Jameson J, eds. Endocrinology. II . Philadelphia, PA: WB Saunders; 2001:1290–1300.

149. Yang SX, Pollock HG, Rawitch AB. Glycosylation in human thy- roglobulin: location of the N-linked oligosaccharide units and SAMPLE

Made with FlippingBook - Online catalogs