Braverman.Tiroides_11ed

La tiroides normal

CAPÍTULO 4 n Síntesis de hormona tiroidea 79

91. Pela I, Bigozzi M, Bianchi B. Profound hypokalemia and hypo- chloremic metabolic alkalosis during thiazide therapy in a child with Pendred syndrome. Clin Nephrol 2008;69(6):450–453. 92. Everett LA, Morsli H, Wu DK, et al. Expression pattern of the mouse ortholog of the Pendred’s syndrome gene (Pds) sug- gests a key role for pendrin in the inner ear. Proc Natl Acad Sci 1999;96:9727–9732. 93. Royaux IE, Belyantseva IA, Wu T, et al. Localization and func- tional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in Pendred syndrome. J Assoc Res Otolaryngol 2003;4(3):394–404. 94. Wangemann P, Kim HM, Billings S, et al. Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression. Am J Physiol Renal Physiol 2009;297(5):F1435–F1447. 95. Wangemann P, Nakaya K, Wu T, et al. Loss of cochlear HCO 3 - secretion causes deafness via endolymphatic acidification and inhibition of Ca2 + reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 2007;292(5):F1345–F1353. 96. Nakaya K, Harbidge DG, Wangemann P, et al. Lack of pendrin HCO 3 - transport elevates vestibular endolymphatic [Ca2 + ] by inhibition of acid-sensitive TRPV5 and TRPV6 channels. Am J Physiol Renal Physiol 2007;292(5):F1314–F1321. 97. Dror AA, Politi Y, Shahin H, et al. Calcium oxalate stone forma- tion in the inner ear as a result of an Slc26a4 mutation. J Biol Chem 2010;285(28):21724–21735. 98. Pedemonte N, Caci E, Sondo E, et al. Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 2007;178(8): 5144–5153. 99. Nakao I, Kanaji S, Ohta S, et al. Identification of pendrin as a common mediator for mucus production in bronchial asthma and chronic obstructive pulmonary disease. J Immunol 2008;180(9):6262–6269. 100. Nakagami Y, Favoreto S Jr, Zhen G, et al. The epithelial anion transporter pendrin is induced by allergy and rhinovirus infec- tion, regulates airway surface liquid, and increases airway reactivity and inflammation in an asthma model. J Immunol 2008;181(3):2203–2210. 101. Pendred V. Deaf-mutism and goitre. Lancet 1896;2:532. 102. Fraser GR. Association of congenital deafness with goitre (Pen- dred’s syndrome). Ann Hum Genet 1965;28:201–249. 103. Choi BY, Muskett J, King KA, et al. Hereditary hearing loss with thyroid abnormalities. Adv Oto-Rhino-Laryngol 2011;70:43–49. 104. Morgans ME, Trotter WR. Association of congenital deaf- ness with goitre: the nature of the thyroid defect. Lancet 1958; 1:607–609. 105. Reardon W, Coffey R, Chowdhury T, et al. Prevalence, age of onset, and natural history of thyroid disease in Pendred syn- drome. J Med Genet 1999;36(8):595–598. 106. Kopp P. Pendred syndrome: clinical characteristics and molecular basis. Curr Opin Endocrinol Diabetes 1999;6(4):261–269. 107. Ladsous M, Vlaeminck-Guillem V, Dumur V, et al. Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid 2014;24(4):639–648. 108. Isreekar H, Uppia V, Patil S, et al. Pendred syndrome with ret- rosternal goitre. Indian J Surg 2013;75:S329–S330. 109. Kühnen P, Turan S, Fröhler S, et al. Identification of PENDRIN (SLC26A4) mutations in patients with congenital hypothyroid- ism and “apparent” thyroid dysgenesis. J Clin Endocrinol Metab 2014;99(1):E169–E176. 110. Kopp P.Mutations in the Pendred Syndrome (PDS/SLC26A) gene: an increasingly complex phenotypic spectrum from goiter to thy- roid hypoplasia. J Clin Endocrinol Metab 2014;99(1):67–69. 111. Pryor SP, Madeo AC, Reynolds JC, et al. SLC26A4/PDS geno- type-phenotype correlation in hearing loss with enlargement of

nodules of thyroid toxic multinodular goiter. Eur J Endocrinol 2001;145(5):591–597. 71. Kondo T, Nakamura N, Suzuki K, et al. Expression of human pendrin in diseased thyroids. J Histochem Cytochem 2003;51(2):167–173. 72. Dentice M, Luongo C, Elefante A, et al. Pendrin is a novel in vivo downstream target gene of the TTF-1/Nkx-2.1 homeodomain transcription factor in differentiated thyroid cells. Mol Cell Biol 2005;25(22):10171–10182. 73. Muscella A, Marsigliante S, Verri T, et al. PKC-epsilon-dependent cytosol-to-membrane translocation of pendrin in rat thyroid PC Cl3 cells. J Cell Physiol 2008;217(1):103–112. 74. Arturi F, Russo D, Bidart JM, et al. Expression pattern of the pendrin and sodium/iodide symporter genes in human thyroid carcinoma cell lines and human thyroid tumors. Eur J Endocri- nol 2001;145(2):129–135. 75. Gerard AC, Daumerie C, Mestdagh C, et al. Correlation between the loss of thyroglobulin iodination and the expression of thyroid- specific proteins involved in iodine metabolism in thyroid carci- nomas. J Clin Endocrinol Metab 2003;88(10):4977–4983. 76. Skubis-Zegadlo J, Nikodemska A, Przytula E, et al. Expression of pendrin in benign and malignant human thyroid tissues. Brit J Cancer 2005;93(1):144–151. 77. Xing M, Tokumaru Y, Wu G, et al. Hypermethylation of the Pen- dred syndrome gene SLC26A4 is an early event in thyroid tum- origenesis. Cancer Res 2003;63(9):2312–2315. 78. Dossena S, Nofziger C, Tamma G, et al. Molecular and func- tional characterization of human pendrin and its allelic variants. Cell Physiol Biochem 2011;28(3):451–466. 79. Everett LA, Green ED. A family of mammalian anion transport- ers and their involvement in human genetic diseases. Hum Mol Genet 1999;8:1883–1891. 80. Scott DA, Wang R, Kreman TM, et al. Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum Mol Genet 2000;9:1709–1715. 81. Shcheynikov N, Yang D, Wang Y, et al. The Slc26a4 transporter functions as an electroneutral Cl /I /HCO 3 exchanger: role of Slc26a4 and Slc26a6 in I and HCO 3 secretion and in regu- lation of CFTR in the parotid duct. J Physiol 2008;586(16): 3813–3824. 82. Wolff J.What is the role of pendrin? Thyroid 2005;15(4):346–348. 83. Bizhanova A, Kopp P. Controversies concerning the role of pen- drin as an apical iodide transporter in thyroid follicular cells. Cell Physiol Biochem 2011;28(3):485–490. 84. Royaux IE, Wall SM, Karniski LP, et al. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 2001;98(7):4221–4226. 85. Soleimani M, Greeley T, Petrovic S, et al. Pendrin: an apical Cl − / OH − /HCO 3 − exchanger in the kidney cortex. Am J Physiol Renal Physiol 2001;280:F356–F364. 86. Wall SM. Recent advances in our understanding of intercalated cells. Curr Opin Nephrol Hypertens 2005;14(5):480–484. 87. Wall SM. Renal intercalated cells and blood pressure regulation. Kidney Res Clin Pract 2017;36(4):305–317. 88. Verlander JW, Hassell KA, Royaux IE, et al. Deoxycorticoste- rone upregulates PDS (Slc26a4) in mouse kidney: role of pen- drin in mineralocorticoid-induced hypertension. Hypertension 2003;42(3):356–362. 89. Verlander JW, Kim YH, Shin W, et al. Dietary Cl( - ) restriction upregulates pendrin expression within the apical plasma mem- brane of type B intercalated cells. Am J Physiol Renal Physiol 2006;291(4):F833–F839. 90. Kandasamy N, Fugazzola L, Evans M, et al. Life-threatening metabolic alkalosis in Pendred syndrome. Europ J Endocrinol 2011;165(1):167–170.

SAMPLE

Made with FlippingBook - Online catalogs