Braverman.Tiroides_11ed

78 SECCIÓN I n La tiroides normal

29. Kambe F, Seo H. Thyroid-specific transcription factors. Endocr J 1997;44(6):775–784. 30. Riedel C, Levy O, Carrasco N. Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin. J Biol Chem 2001;276(24):21458–21463. 31. Wolff J, Chaikoff I. Plasma inorganic iodide as homeostatic reg- ulator of thyroid function. J Biol Chem 1948;174:555–564. 32. Wolff J, Chaikoff I, Goldberg R, et al. The temporary nature of the inhibitory action of excess iodide on organic iodide synthesis in the normal thyroid. Endocrinology 1949;45:504–513. 33. Grollman EF, Smolar A, Ommaya A, et al. Iodine suppression of iodide uptake in FRTL-5 thyroid cells. Endocrinology 1986; 118(6):2477–2482. 34. Braverman LE, Ingbar SH. Changes in thyroidal function during adaptation to large doses of iodide. J Clin Invest 1963;42:1216–1231. 35. Uyttersprot N, Pelgrims N, Carrasco N, et al. Moderate doses of iodide in vivo inhibit cell proliferation and the expression of thyroperoxidase and Na + /I − symporter mRNAs in dog thyroid. Mol Cell Endocrinol 1997;131(2):195–203. 36. Spitzweg C, Joba W, Morris JC, et al. Regulation of sodium iodide symporter gene expression in FRTL-5 rat thyroid cells. Thyroid 1999;9(8):821–830. 37. Eng PH, Cardona GR, Fang SL, et al. Escape from the acute Wolff-Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinology 1999;140(8):3404–3410. 38. Eng PH, Cardona GR, Previti MC, et al. Regulation of the sodium iodide symporter by iodide in FRTL-5 cells. Eur J Endo- crinol 2001;144(2):139–144. 39. Suzuki K, Lavaroni S, Mori A, et al. Autoregulation of thy- roid-specific gene transcription by thyroglobulin. Proc Natl Acad Sci U S A 1998;95(14):8251–8256. 40. Suzuki K, Mori A, Saito J, et al. Follicular thyroglobulin suppresses iodide uptake by suppressing expression of the sodium/iodide symporter gene. Endocrinology 1999;140(11): 5422–5430. 41. Ishido Y, Luo Y, Yoshihara A, et al. Follicular thyroglobulin enhances gene expression necessary for thyroid hormone secre- tion. Endocr J 2015;62(11):1007–1015. 42. Dohan O, De la Vieja A, Paroder V, et al. The sodium/iodide sym- porter (NIS): characterization, regulation, and medical signifi- cance. Endocr Rev 2003;24(1):48–77. 43. Jhiang SM. Regulation of sodium/iodide symporter. Rev Endocr Metab Disord 2000;1(3):205–215. 44. Szinnai G, Lacroix L, Carre A, et al. Sodium/iodide symporter (NIS) gene expression is the limiting step for the onset of thyroid function in the human fetus. J Clin Endocrinol Metab 2007;92(1): 70–76. 45. Hannoush ZC, Weiss RE. Defects of thyroid hormone synthe- sis and action. Endocrinol Metab Clin North Am 2017;46(2): 375–388. 46. Szinnai G, Kosugi S, Derrien C, et al. Extending the clinical het- erogeneity of iodide transport defect (ITD): a novel mutation R124H of the sodium/iodide symporter gene and review of gen- otype-phenotype correlations in ITD. J Clin Endocrinol Metab 2006;91(4):1199–1204. 47. Weiss SJ, Philp NJ, Grollman EF. Effect of thyrotropin on iodide efflux in FRTL-5 cells mediated by Ca2 + . Endocrinology 1984;114(4):1108–1113. 48. Nilsson M, Bjorkman U, Ekholm R, et al. Iodide transport in primary cultured thyroid follicle cells: evidence of a TSH- regulated channel mediating iodide efflux selectively across the apical domain of the plasma membrane. Eur J Cell Biol 1990;52(2):270–281. 49. Nilsson M, Bjorkman U, Ekholm R, et al. Polarized efflux of iodide in porcine thyrocytes occurs via a cAMP-regulated

iodide channel in the apical plasma membrane. Acta Endocrinol (Copenh) 1992;126(1):67–74. 50. Golstein P, Abramow M, Dumont JE, et al. The iodide channel of the thyroid: a plasma membrane vesicle study. Am J Physiol 1992;263:C590–C597. 51. Scott DA, Wang R, Kreman TM, et al. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 1999;21:440–443. 52. Taylor JP, Metcalfe RA, Watson PF, et al. Mutations of the PDS gene, encoding pendrin, are associated with protein mis- localization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. J Clin Endocrinol Metabol 2002;87:1778–1784. 53. YoshidaA,Taniguchi S, Hisatome I, et al. Pendrin is an iodide-spe- cific apical porter responsible for iodide efflux from thyroid cells. J Clin Endocrinol Metabol 2002;87:3356–3361. 54. Gillam MP, Sidhaye A, Lee EJ, et al. Functional characterization of pendrin in a polarized cell system: evidence for pendrin-medi- ated apical iodide efflux. J Biol Chem 2004;279:13004–13010. 55. Wemeau JL, Kopp P. Pendred syndrome. Best Pract Res Clin Endocrinol Metab 2017;31(2):213–224. 56. Fraser GR, Morgans ME, Trotter WR. The syndrome of sporadic goitre and congenital deafness. Q J Med 1960;29:279–295. 57. Bizhanova A, Kopp P. Genetics and phenomics of Pendred syn- drome. Mol Cell Endocrinol 2010;322(1–2):83–90. 58. Everett LA, Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997;17:411–422. 59. Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med 2013;34(2–3): 494–515. 60. Royaux IE, Suzuki K, Mori A, et al. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 2000;141:839–845. 61. Dossena S, Rodighiero S, Vezzoli V, et al. Functional characteri- zation of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome. J Mol Endocrinol 2009;43(3):93–103. 62. Porra V, Bernier-Valentin F, Trouttet-Masson S, et al. Character- ization and semiquantitative analyses of pendrin expressed in normal and tumoral human thyroid tissues. J Clin Endocrinol Metab 2002;87(4):1700–1707. 63. Aravind L, Koonin EV. The STAS domain—a link between anion transporters and antisigma-factor antagonists. Curr Biol 2001;10:R53–R55. 64. Sharma AK, Ye L, Baer CE, et al. Solution structure of the gua- nine nucleotide-binding STAS domain of SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. J Biol Chem 2011;286(10):8534–8544. 65. Pesce L, Bizhanova A, Caraballo J, et al. TSH regulates pendrin membrane abundance and enhances iodide efflux in thyroid cells. Endocrinology 2012;153(1):512–521. 66. Bizhanova A, Chew T, Khuon S, et al. Analysis of cellular local- ization and function of carboxy-terminal truncation mutants of pendrin. Cell Physiol Biochem 2011;28(3):423–434. 67. Kopp P, Pesce L, Solis SJ. Pendred syndrome and iodide trans- port in the thyroid. Trends Endocrinol Metab 2008;19(7): 260–268. 68. Bidart JM, Mian C, Lazar V, et al. Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues. J Clin Endocrinol Metab 2000;85(5):2028–2033. 69. Mian C, Lacroix L, Alzieu L, et al. Sodium iodide symporter and pendrin expression in human thyroid tissues. Thyroid 2001;11(9):825–830.

70. Russo D, Bulotta S, Bruno R, et al. Sodium/iodide symporter (NIS) and pendrin are expressed differently in hot and cold SAMPLE

Made with FlippingBook - Online catalogs