Albert.Columna vertebral_4ed
325
25 Fijación transpedicular percutánea: mínimamente invasiva
34. Mohi Eldin MM, Hassan ASA. Percutaneous transpedicular fixation: technical tips and pitfalls of sextant and pathfinder systems. Asian Spine J . 2016;10(1):111-122. 35. Molina CA, Phillips FM, Colman MW, et al. A cadaveric precision and accuracy analysis of augmented reality-mediated percutaneous pedicle implant insertion. J Neurosurg Spine . 2020;34(2):1-9. 36. Molliqaj G, Schatlo B, Alaid A, et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg Focus . 2017;42(5):E14. 37. Mroz TE, Abdullah KG, Steinmetz MP, Klineberg EO, Lieberman IH. Radiation exposure to the surgeon during percu taneous pedicle screw placement. J Spinal Disord Tech . 2011;24(4):264-267. 38. Nakashima H, Sato K, Ando T, Inoh H, Nakamura H. Comparison of the percutaneous screw placement precision of isocentric C-arm 3-dimensional fluoroscopy-navigated pedicle screw implantation and conventional fluoroscopy method with minimally invasive surgery. J Spinal Disord Tech . 2009;22(7):468-472. 39. Pechlivanis I, Kiriyanthan G, Engelhardt M, et al. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976) . 2009;34(4):392-398. 40. Peng YN, Tsai LC, Hsu HC, Kao CH. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Transl Med . 2020;8(13):824. 41. Pennington Z, Cottrill E, Westbroek EM, et al. Evaluation of surgeon and patient radiation exposure by imaging tech nology in patients undergoing thoracolumbar fusion: systematic review of the literature. Spine J . 2019;19(8):1397-1411. 42. Phan K, Rao PJ, Mobbs RJ. Percutaneous versus open pedicle screw fixation for treatment of thoracolumbar fractures: systematic review and meta-analysis of comparative studies. Clin Neurol Neurosurg . 2015;135:85-92. 43. Pott PP, Scharf HP, Schwarz MLR. Today’s state of the art in surgical robotics*. Comput Aided Surg . 2005;10(2):101-132. 44. Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives. Neurosurgery . 2013;72(suppl 1):12-18. 45. Roy-Camille R, Roy-Camille M, Demeulenaere C. Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metal lic plates screwed into vertebral pedicles and articular apophyses. Presse Med (1893) . 1970;78(32):1447-1448. 46. Ryang YM, Villard J, Obermuller T, et al. Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine. Spine J . 2015;15(3):467-476. 47. Schizas C, Thein E, Kwiatkowski B, Kulik G. Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg . 2012;78(2):240-245. 48. Smith HE, Welsch MD, Sasso RC, Vaccaro AR. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med . 2008;31(5):532-537. 49. Swiatek PR, McCarthy MH, Weiner J, Bhargava S, Vaishnav AS, Iyer S. Intraoperative image guidance for lateral posi tion surgery. Ann Transl Med . 2021;9(1):90. 50. Tajsic T, Patel K, Farmer R, Mannion RJ, Trivedi RA. Spinal navigation for minimally invasive thoracic and lumbosacral spine fixation: implications for radiation exposure, operative time, and accuracy of pedicle screw placement. Eur Spine J . 2018;27(8):1918-1924. 51. Tian W, Han X, Liu B, et al. A robot-assisted surgical system using a force-image control method for pedicle screw insertion. PLoS One . 2014;9(1):e86346. 52. Tokioka T, Oda Y. Minimally invasive cervical pedicle screw fixation (MICEPS) via a posterolateral approach. Clin Spine Surg . 2019;32(7):279-284. 53. Tsai TH, Tzou RD, Su YF, Wu CH, Tsai CY, Lin CL. Pedicle screw placement accuracy of bone-mounted miniature robot system. Medicine (Baltimore) . 2017;96(3):e5835. 54. Uthman OA, van der Windt DA, Jordan JL, et al. Exercise for lower limb osteoarthritis: systematic review incorporating trial sequential analysis and network meta-analysis. Br J Sports Med . 2014;48(21):1579. 55. Vaccaro AR, Rizzolo SJ, Balderston RA, et al. Placement of pedicle screws in the thoracic spine. Part II: an anatomical and radiographic assessment. J Bone Joint Surg Am . 1995;77(8):1200-1206. 56. Vaishnav AS, Merrill RK, Sandhu H, et al. A review of techniques, time demand, radiation exposure, and outcomes of skin-anchored intraoperative 3D navigation in minimally invasive lumbar spinal surgery. Spine (Phila Pa 1976) . 2020;45(8):E465-E476. 57. van Dijk JD, van den Ende RPJ, Stramigioli S, Kochling M, Hoss N. Clinical pedicle screw accuracy and devi ation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy. Spine (Phila Pa 1976) . 2015;40(17):E986-E991. 58. Yson SC, Sembrano JN, Sanders PC, Santos ERG, Ledonio CGT, Polly DW Jr. Comparison of cranial facet joint vio lation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation. Spine (Phila Pa 1976) . 2013;38(4):E251-E258. 59. Zhang JN, Fan Y, Hao DJ. Risk factors for robot-assisted spinal pedicle screw malposition. Sci Rep . 2019;9(1):3025. 60. Zhao Q, Zhang H, Hao D, Guo H, Wang B, He B. Complications of percutaneous pedicle screw fixation in treating thoracolumbar and lumbar fracture. Medicine (Baltimore) . 2018;97(29):e11560.
Copyright © 2024 Wolters Kluwer, Inc. Unauthorized reproduction of the content is prohibited.
Made with FlippingBook - Online catalogs